These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 30479529)
61. Live high, train low - influence on resting and post-exercise hepcidin levels. Govus AD; Peeling P; Abbiss CR; Lawler NG; Swinkels DW; Laarakkers CM; Thompson KG; Peiffer JJ; Gore CJ; Garvican-Lewis LA Scand J Med Sci Sports; 2017 Jul; 27(7):704-713. PubMed ID: 27038097 [TBL] [Abstract][Full Text] [Related]
62. Quantification of the perceived training load and its relationship with changes in physical fitness performance in junior soccer players. Gil-Rey E; Lezaun A; Los Arcos A J Sports Sci; 2015; 33(20):2125-32. PubMed ID: 26222603 [TBL] [Abstract][Full Text] [Related]
63. Impairment of 3000-m run time at altitude is influenced by arterial oxyhemoglobin saturation. Chapman RF; Stager JM; Tanner DA; Stray-Gundersen J; Levine BD Med Sci Sports Exerc; 2011 Sep; 43(9):1649-56. PubMed ID: 21311361 [TBL] [Abstract][Full Text] [Related]
64. Combined intermittent hypoxic exposure at rest and continuous hypoxic training can maintain elevated hemoglobin mass after a hypoxic camp. Peltonen JE; Leppävuori A; Lehtonen E; Mikkonen RS; Kettunen O; Nummela A; Ohtonen O; Gagnon DD; Wehrlin JP; Wilber RL; Linnamo V J Appl Physiol (1985); 2024 Aug; 137(2):409-420. PubMed ID: 38961820 [TBL] [Abstract][Full Text] [Related]
65. A 11-day compressed overload and taper induces larger physiological improvements than a normal taper in elite cyclists. Rønnestad BR; Vikmoen O Scand J Med Sci Sports; 2019 Dec; 29(12):1856-1865. PubMed ID: 31410894 [TBL] [Abstract][Full Text] [Related]
66. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Hellard P; Scordia C; Avalos M; Mujika I; Pyne DB Appl Physiol Nutr Metab; 2017 Oct; 42(10):1106-1117. PubMed ID: 28651061 [TBL] [Abstract][Full Text] [Related]
68. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Saltin B; Larsen H; Terrados N; Bangsbo J; Bak T; Kim CK; Svedenhag J; Rolf CJ Scand J Med Sci Sports; 1995 Aug; 5(4):209-21. PubMed ID: 7552766 [TBL] [Abstract][Full Text] [Related]
69. Effects of three weeks base training at moderate simulated altitude with or without hypoxic residence on exercise capacity and physiological adaptations in well-trained male runners. Yi L; Wu J; Yan B; Wang Y; Zou M; Zhang Y; Li F; Qiu J; Girard O PeerJ; 2024; 12():e17166. PubMed ID: 38563004 [TBL] [Abstract][Full Text] [Related]
70. Temperate Performance Benefits after Heat, but Not Combined Heat and Hypoxic Training. McCleave EL; Slattery KM; Duffield R; Saunders PU; Sharma AP; Crowcroft SJ; Coutts AJ Med Sci Sports Exerc; 2017 Mar; 49(3):509-517. PubMed ID: 27787334 [TBL] [Abstract][Full Text] [Related]
71. Endurance training at altitude. Saunders PU; Pyne DB; Gore CJ High Alt Med Biol; 2009; 10(2):135-48. PubMed ID: 19519223 [TBL] [Abstract][Full Text] [Related]
72. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. Saunders PU; Telford RD; Pyne DB; Cunningham RB; Gore CJ; Hahn AG; Hawley JA J Appl Physiol (1985); 2004 Mar; 96(3):931-7. PubMed ID: 14607850 [TBL] [Abstract][Full Text] [Related]
73. Monitoring Training Load and Well-Being During the In-Season Phase in National Collegiate Athletic Association Division I Men's Basketball. Conte D; Kolb N; Scanlan AT; Santolamazza F Int J Sports Physiol Perform; 2018 Sep; 13(8):1067-1074. PubMed ID: 29431544 [TBL] [Abstract][Full Text] [Related]
74. Nutritional strategies in an elite wheelchair marathoner at 3900 m altitude: a case report. Sanz-Quinto S; Moya-Ramón M; Brizuela G; Rice I; Urbán T; López-Grueso R J Int Soc Sports Nutr; 2019 Nov; 16(1):51. PubMed ID: 31707995 [TBL] [Abstract][Full Text] [Related]
75. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Saunders PU; Garvican-Lewis LA; Schmidt WF; Gore CJ Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i26-30. PubMed ID: 24282203 [TBL] [Abstract][Full Text] [Related]
76. Training at moderate altitude improves submaximal but not maximal performance-related parameters in elite rowers. Cerda-Kohler H; Haichelis D; Reuquén P; Miarka B; Homer M; Zapata-Gómez D; Aedo-Muñoz E Front Physiol; 2022; 13():931325. PubMed ID: 36311238 [TBL] [Abstract][Full Text] [Related]
77. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport. Bonne TC; Lundby C; Lundby AK; Sander M; Bejder J; Nordsborg NB Drug Test Anal; 2015 Aug; 7(8):655-62. PubMed ID: 25545030 [TBL] [Abstract][Full Text] [Related]
78. Effects of simulated and real altitude exposure in elite swimmers. Robertson EY; Aughey RJ; Anson JM; Hopkins WG; Pyne DB J Strength Cond Res; 2010 Feb; 24(2):487-93. PubMed ID: 20072049 [TBL] [Abstract][Full Text] [Related]
79. Effects of intermittent hypoxia on running economy. Burtscher M; Gatterer H; Faulhaber M; Gerstgrasser W; Schenk K Int J Sports Med; 2010 Sep; 31(9):644-50. PubMed ID: 20589591 [TBL] [Abstract][Full Text] [Related]
80. Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Robach P; Lundby C Scand J Med Sci Sports; 2012 Jun; 22(3):303-5. PubMed ID: 22612361 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]