These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30479545)

  • 1. The influence of
    Namiki S; Otani T; Motoki Y; Seike N
    J Pestic Sci; 2018 Nov; 43(4):248-254. PubMed ID: 30479545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between growth stage of
    Namiki S; Seike N; Motoki Y
    J Pestic Sci; 2019 Feb; 44(1):1-8. PubMed ID: 30846904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil.
    Namiki S
    J Pestic Sci; 2022 Aug; 47(3):131-138. PubMed ID: 36479451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of uptake, translocation and accumulation of several neonicotinoids in komatsuna (Brassica rapa var. perviridis) from contaminated soils.
    Li Y; Long L; Yan H; Ge J; Cheng J; Ren L; Yu X
    Chemosphere; 2018 Jun; 200():603-611. PubMed ID: 29510368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential uptake and translocation of β-HCH and dieldrin by several plant species from hydroponic medium.
    Namiki S; Otani T; Seike N; Satoh S
    Environ Toxicol Chem; 2015 Mar; 34(3):536-44. PubMed ID: 25470472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis).
    Wang W; Wan Q; Li Y; Xu W; Yu X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109488. PubMed ID: 31376804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the sorption behavior and plant uptake of pesticides in Japanese soils.
    Motoki Y
    J Pestic Sci; 2020 Aug; 45(3):159-165. PubMed ID: 32913419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.).
    Qiu J; Chen G; Xu J; Luo E; Liu Y; Wang F; Zhou H; Liu Y; Zhu F; Ouyang G
    J Hazard Mater; 2016 Oct; 316():52-9. PubMed ID: 27209519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications.
    Gredelj A; Nicoletto C; Polesello S; Ferrario C; Valsecchi S; Lava R; Barausse A; Zanon F; Palmeri L; Guidolin L; Bonato M
    Sci Total Environ; 2020 Jun; 720():137333. PubMed ID: 32146391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and aloe (Barbadensis).
    Qiu J; Chen G; Zhou H; Xu J; Wang F; Zhu F; Ouyang G
    Sci Total Environ; 2016 Apr; 550():1134-1140. PubMed ID: 26878720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pesticide bioconcentration modelling for fruit trees.
    Paraíba LC
    Chemosphere; 2007 Jan; 66(8):1468-75. PubMed ID: 17092536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants.
    Zhang H; Chen J; Ni Y; Zhang Q; Zhao L
    Chemosphere; 2009 Aug; 76(6):740-6. PubMed ID: 19541345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security.
    Bagheri M; Al-Jabery K; Wunsch D; Burken JG
    Sci Total Environ; 2020 Jan; 698():133999. PubMed ID: 31499345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and modeling of pesticides by roots and shoots of parrotfeather (Myriophyllum aquaticum).
    Turgut C
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):342-6. PubMed ID: 16305140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling pesticide residue uptake by leguminous plants: a geocarpic fruit model for peanuts.
    Li Z
    Pest Manag Sci; 2023 Jan; 79(1):152-162. PubMed ID: 36107631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.).
    Wang Q; Zhao H; Xu L; Wang Y
    Ecotoxicol Environ Saf; 2019 Jun; 174():683-689. PubMed ID: 30878008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative uptake, translocation and subcellular distribution of phthalate esters and their primary monoester metabolites in Chinese cabbage (Brassica rapa var. chinensis).
    Cheng Z; Yao Y; Sun H
    Sci Total Environ; 2020 Nov; 742():140550. PubMed ID: 32623175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic modeling of pesticide uptake with a 3D plant architecture model.
    Jorda H; Huber K; Kunkel A; Vanderborght J; Javaux M; Oberdörster C; Hammel K; Schnepf A
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):55678-55689. PubMed ID: 34142318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Molybdenum on Plant Physiology and Cadmium Uptake and Translocation in Rape (
    Han Z; Wei X; Wan D; He W; Wang X; Xiong Y
    Int J Environ Res Public Health; 2020 Mar; 17(7):. PubMed ID: 32244320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace gases generated in closed plant cultivation systems and their effects on plant growth.
    Tani A; Kiyota M; Aiga I
    Biol Sci Space; 1995 Dec; 9(4):314-26. PubMed ID: 11541892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.