These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30479881)

  • 1. Greenhouse gas flux with reflooding of a drained salt marsh soil.
    Wollenberg JT; Biswas A; Chmura GL
    PeerJ; 2018; 6():e5659. PubMed ID: 30479881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid carbon accumulation following managed realignment on the Bay of Fundy.
    Wollenberg JT; Ollerhead J; Chmura GL
    PLoS One; 2018; 13(3):e0193930. PubMed ID: 29561874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrogen loading on emission of carbon gases from estuarine tidal marshes with varying salinity.
    Hu M; Peñuelas J; Sardans J; Huang J; Li D; Tong C
    Sci Total Environ; 2019 Jun; 667():648-657. PubMed ID: 30833263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh.
    Capooci M; Barba J; Seyfferth AL; Vargas R
    Sci Total Environ; 2019 Oct; 686():1164-1172. PubMed ID: 31412512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.
    Wang F; Kroeger KD; Gonneea ME; Pohlman JW; Tang J
    Ecol Evol; 2019 Feb; 9(4):1911-1921. PubMed ID: 30847081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.
    Chmura GL; Kellman L; van Ardenne L; Guntenspergen GR
    PLoS One; 2016; 11(2):e0149937. PubMed ID: 26914333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term nutrient addition increases respiration and nitrous oxide emissions in a New England salt marsh.
    Martin RM; Wigand C; Elmstrom E; Lloret J; Valiela I
    Ecol Evol; 2018 May; 8(10):4958-4966. PubMed ID: 29876073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.
    Hu M; Ren H; Ren P; Li J; Wilson BJ; Tong C
    J Environ Sci (China); 2017 Feb; 52():210-222. PubMed ID: 28254041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal variations of nitrous oxide fluxes and soil denitrification rates in subtropical freshwater and brackish tidal marshes of the Min River estuary.
    Wang X; Hu M; Ren H; Li J; Tong C; Musenze RS
    Sci Total Environ; 2018 Mar; 616-617():1404-1413. PubMed ID: 29122343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal variation of CO
    Yang WB; Yuan CS; Tong C; Yang P; Yang L; Huang BQ
    Mar Pollut Bull; 2017 Jun; 119(1):289-298. PubMed ID: 28434669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of land reclamation on tidal marsh 'blue carbon' stocks.
    Ewers Lewis CJ; Baldock JA; Hawke B; Gadd PS; Zawadzki A; Heijnis H; Jacobsen GE; Rogers K; Macreadie PI
    Sci Total Environ; 2019 Jul; 672():427-437. PubMed ID: 30965258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration.
    Merbold L; Eugster W; Stieger J; Zahniser M; Nelson D; Buchmann N
    Glob Chang Biol; 2014 Jun; 20(6):1913-28. PubMed ID: 24395474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.
    McNicol G; Sturtevant CS; Knox SH; Dronova I; Baldocchi DD; Silver WL
    Glob Chang Biol; 2017 Jul; 23(7):2768-2782. PubMed ID: 27888548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration.
    Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S
    Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice?
    Oram NJ; van Groenigen JW; Bodelier PLE; Brenzinger K; Cornelissen JHC; De Deyn GB; Abalos D
    Sci Total Environ; 2020 Jul; 727():138476. PubMed ID: 32330711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.