These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30479893)
1. Soil moisture dynamics under two rainfall frequency treatments drive early spring CO Baldauf S; Ladrón de Guevara M; Maestre FT; Tietjen B PeerJ; 2018; 6():e5904. PubMed ID: 30479893 [TBL] [Abstract][Full Text] [Related]
2. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Escolar C; Maestre FT; Rey A Soil Biol Biochem; 2015 Jan; 80():9-17. PubMed ID: 25914428 [TBL] [Abstract][Full Text] [Related]
3. Response of desert biological soil crusts to alterations in precipitation frequency. Belnap J; Phillips SL; Miller ME Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292 [TBL] [Abstract][Full Text] [Related]
4. Environmental and ecological factors influencing soil functionality of biologically crusted soils by different lichen species in drylands. Miralles I; Trasar-Cepeda C; Soria R; Ortega R; Lucas-Borja ME Sci Total Environ; 2021 Nov; 794():148491. PubMed ID: 34217081 [TBL] [Abstract][Full Text] [Related]
5. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Lafuente A; Berdugo M; de Guevara ML; Gozalo B; Maestre FT Ecohydrology; 2018 Sep; 11(6):. PubMed ID: 30288205 [TBL] [Abstract][Full Text] [Related]
6. Soil-atmosphere fluxes of CO Richardson AD; Kong GV; Taylor KM; Le Moine JM; Bowker MA; Barber JJ; Basler D; Carbone MS; Hayer M; Koch GW; Salvatore MR; Sonnemaker AW; Trilling DE Front Microbiol; 2022; 13():979825. PubMed ID: 36225383 [TBL] [Abstract][Full Text] [Related]
7. Non-rainfall water inputs: A key water source for biocrust carbon fixation. Chamizo S; Rodríguez-Caballero E; Moro MJ; Cantón Y Sci Total Environ; 2021 Oct; 792():148299. PubMed ID: 34146814 [TBL] [Abstract][Full Text] [Related]
8. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Maestre FT; Escolar C; de Guevara ML; Quero JL; Lázaro R; Delgado-Baquerizo M; Ochoa V; Berdugo M; Gozalo B; Gallardo A Glob Chang Biol; 2013 Dec; 19(12):3835-47. PubMed ID: 23818331 [TBL] [Abstract][Full Text] [Related]
9. Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems. Miralles I; Lázaro R; Sánchez-Marañón M; Soriano M; Ortega R Sci Total Environ; 2020 Mar; 709():134654. PubMed ID: 31905575 [TBL] [Abstract][Full Text] [Related]
10. Biocrust carbon exchange varies with crust type and time on Chihuahuan Desert gypsum soils. Hoellrich MR; James DK; Bustos D; Darrouzet-Nardi A; Santiago LS; Pietrasiak N Front Microbiol; 2023; 14():1128631. PubMed ID: 37234525 [TBL] [Abstract][Full Text] [Related]
11. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: insights from an 8 yr experiment. Ladrón de Guevara M; Gozalo B; Raggio J; Lafuente A; Prieto M; Maestre FT New Phytol; 2018 Nov; 220(3):811-823. PubMed ID: 29380398 [TBL] [Abstract][Full Text] [Related]
13. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. García-Palacios P; Escolar C; Dacal M; Delgado-Baquerizo M; Gozalo B; Ochoa V; Maestre FT Glob Chang Biol; 2018 Oct; 24(10):4645-4656. PubMed ID: 30007104 [TBL] [Abstract][Full Text] [Related]
14. Biocrusts intensify water redistribution and improve water availability to dryland vegetation: insights from a spatially-explicit ecohydrological model. Baldauf S; Cantón Y; Tietjen B Front Microbiol; 2023; 14():1179291. PubMed ID: 37448577 [TBL] [Abstract][Full Text] [Related]
15. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Ferrenberg S; Reed SC; Belnap J Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12116-21. PubMed ID: 26371310 [TBL] [Abstract][Full Text] [Related]
16. UAV RGB, thermal infrared and multispectral imagery used to investigate the control of terrain on the spatial distribution of dryland biocrust. Blanco-Sacristán J; Panigada C; Gentili R; Tagliabue G; Garzonio R; Martín MP; Ladrón de Guevara M; Colombo R; Dowling TPF; Rossini M Earth Surf Process Landf; 2021 Sep; 46(12):2466-2484. PubMed ID: 34690397 [TBL] [Abstract][Full Text] [Related]
17. [Effects of sand burial on fluxes of greenhouse gases from the soil covered by biocrust in an arid desert region.]. Teng JL; Jia RL; Hu YG; Xu BX; Chen MC; Zhao Y Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):723-734. PubMed ID: 29726176 [TBL] [Abstract][Full Text] [Related]
18. Runoff and soil loss in biocrusts and physical crusts from the Tabernas Desert (southeast Spain) according to rainfall intensity. Lázaro R; Gascón C; Rubio C Front Microbiol; 2023; 14():1171096. PubMed ID: 37293214 [TBL] [Abstract][Full Text] [Related]
19. Biocrusts Modulate Climate Change Effects on Soil Organic Carbon Pools: Insights From a 9-Year Experiment. Díaz-Martínez P; Panettieri M; García-Palacios P; Moreno E; Plaza C; Maestre FT Ecosystems; 2023; 26(3):585-596. PubMed ID: 37179798 [TBL] [Abstract][Full Text] [Related]
20. Species-specific effects of biocrust-forming lichens on soil properties under simulated climate change are driven by functional traits. Concostrina-Zubiri L; Valencia E; Ochoa V; Gozalo B; Mendoza BJ; Maestre FT New Phytol; 2021 Apr; 230(1):101-115. PubMed ID: 33314177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]