These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380 [TBL] [Abstract][Full Text] [Related]
4. Antimalarial actions of Lawsonia inermis, Tithonia diversifolia and Chromolaena odorata in combination. Afolayan FID; Adegbolagun OM; Irungu B; Kangethe L; Orwa J; Anumudu CI J Ethnopharmacol; 2016 Sep; 191():188-194. PubMed ID: 27321410 [TBL] [Abstract][Full Text] [Related]
5. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation potential of Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
8. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z; Wu L; Luo Y; Christie P Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891 [TBL] [Abstract][Full Text] [Related]
9. Monitoring the Efficiency of Azab E; Hegazy AK Plants (Basel); 2020 Aug; 9(9):. PubMed ID: 32824980 [TBL] [Abstract][Full Text] [Related]
10. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Kocoń A; Jurga B Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of soil metal sorption characteristics and heavy metal extractive ability of indigenous plant species in Abeokuta, Nigeria. Azeez JO; Olowoboko TB; Bada BS; Odedina JN; Onasanya OO Int J Phytoremediation; 2020; 22(8):872-884. PubMed ID: 31994407 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation Factor of Selected Heavy Metals in Zea mays. Aladesanmi OT; Oroboade JG; Osisiogu CP; Osewole AO J Health Pollut; 2019 Dec; 9(24):191207. PubMed ID: 31893168 [TBL] [Abstract][Full Text] [Related]
13. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil. Tzvetkova N; Miladinova K; Ivanova K; Georgieva T; Geneva M; Markovska Y J Environ Biol; 2015 Jan; 36 Spec No():145-51. PubMed ID: 26591894 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. Galal TM; Hassan LM; Ahmed DA; Alamri SAM; Alrumman SA; Eid EM PLoS One; 2021; 16(6):e0252229. PubMed ID: 34086714 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
17. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499 [TBL] [Abstract][Full Text] [Related]
18. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media. Saeng-Ngam S; Jampasri K Bull Environ Contam Toxicol; 2022 Apr; 108(4):762-767. PubMed ID: 34997262 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
20. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]