These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30480270)
1. Comparison of different machine learning models for the prediction of forces in copper and silicon dioxide. Li W; Ando Y Phys Chem Chem Phys; 2018 Dec; 20(47):30006-30020. PubMed ID: 30480270 [TBL] [Abstract][Full Text] [Related]
2. Dependence of a cooling rate on structural and vibrational properties of amorphous silicon: A neural network potential-based molecular dynamics study. Li W; Ando Y J Chem Phys; 2019 Sep; 151(11):114101. PubMed ID: 31542013 [TBL] [Abstract][Full Text] [Related]
3. Vibrational Properties of Metastable Polymorph Structures by Machine Learning. Legrain F; van Roekeghem A; Curtarolo S; Carrete J; Madsen GKH; Mingo N J Chem Inf Model; 2018 Dec; 58(12):2460-2466. PubMed ID: 30351054 [TBL] [Abstract][Full Text] [Related]
4. Energy-free machine learning force field for aluminum. Kruglov I; Sergeev O; Yanilkin A; Oganov AR Sci Rep; 2017 Aug; 7(1):8512. PubMed ID: 28819297 [TBL] [Abstract][Full Text] [Related]
5. An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems. Cheng Z; Zhao D; Ma J; Li W; Li S J Phys Chem A; 2020 Jun; 124(24):5007-5014. PubMed ID: 32459485 [TBL] [Abstract][Full Text] [Related]
6. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. Izvekov S; Parrinello M; Burnham CJ; Voth GA J Chem Phys; 2004 Jun; 120(23):10896-913. PubMed ID: 15268120 [TBL] [Abstract][Full Text] [Related]
7. Machine learning force field for thermal oxidation of silicon. Cvitkovich L; Fehringer F; Wilhelmer C; Milardovich D; Waldhör D; Grasser T J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39387410 [TBL] [Abstract][Full Text] [Related]
8. How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching. Yu Z; Annamareddy A; Morgan D; Wang B J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38310473 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Force Field Parameters from Ab Initio Data. Li Y; Li H; Pickard FC; Narayanan B; Sen FG; Chan MKY; Sankaranarayanan SKRS; Brooks BR; Roux B J Chem Theory Comput; 2017 Sep; 13(9):4492-4503. PubMed ID: 28800233 [TBL] [Abstract][Full Text] [Related]
10. Neural Network Force Fields for Metal Growth Based on Energy Decompositions. Hu Q; Weng M; Chen X; Li S; Pan F; Wang LW J Phys Chem Lett; 2020 Feb; 11(4):1364-1369. PubMed ID: 32000486 [TBL] [Abstract][Full Text] [Related]
11. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
13. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses. Bertani M; Charpentier T; Faglioni F; Pedone A J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496 [TBL] [Abstract][Full Text] [Related]
14. Iterative training set refinement enables reactive molecular dynamics Chen L; Sukuba I; Probst M; Kaiser A RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270 [TBL] [Abstract][Full Text] [Related]
15. Accelerating atomistic simulations with piecewise machine-learned Zhang Y; Hu C; Jiang B Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743 [TBL] [Abstract][Full Text] [Related]
16. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework. Yang J; Chen Z; Sun H; Samanta A J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304 [TBL] [Abstract][Full Text] [Related]
17. Effective force field for liquid hydrogen fluoride from ab initio molecular dynamics simulation using the force-matching method. Izvekov S; Voth GA J Phys Chem B; 2005 Apr; 109(14):6573-86. PubMed ID: 16851738 [TBL] [Abstract][Full Text] [Related]
18. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368 [TBL] [Abstract][Full Text] [Related]
19. Liquid to crystal Si growth simulation using machine learning force field. Miao L; Wang LW J Chem Phys; 2020 Aug; 153(7):074501. PubMed ID: 32828094 [TBL] [Abstract][Full Text] [Related]
20. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions. Di Pasquale N; Davie SJ; Popelier PLA J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]