BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30480442)

  • 1. Chemometric Approaches for Developing Infrared Nanosensors To Image Anthracyclines.
    Del Bonis-O'Donnell JT; Pinals RL; Jeong S; Thakrar A; Wolfinger RD; Landry MP
    Biochemistry; 2019 Jan; 58(1):54-64. PubMed ID: 30480442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars.
    Chio L; Del Bonis-O'Donnell JT; Kline MA; Kim JH; McFarlane IR; Zuckermann RN; Landry MP
    Nano Lett; 2019 Nov; 19(11):7563-7572. PubMed ID: 30958010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An
    Harvey JD; Williams RM; Tully KM; Baker HA; Shamay Y; Heller DA
    Nano Lett; 2019 Jul; 19(7):4343-4354. PubMed ID: 31244242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors.
    Pinals RL; Ledesma F; Yang D; Navarro N; Jeong S; Pak JE; Kuo L; Chuang YC; Cheng YW; Sun HY; Landry MP
    Nano Lett; 2021 Mar; 21(5):2272-2280. PubMed ID: 33635655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
    Dinarvand M; Neubert E; Meyer D; Selvaggio G; Mann FA; Erpenbeck L; Kruss S
    Nano Lett; 2019 Sep; 19(9):6604-6611. PubMed ID: 31418577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation and Immobilization of a Single Fluorescence Nanosensor for Selective Injection into Cells.
    Hashim H; Maruyama H; Masuda T; Arai F
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel encapsulation of glucose nanosensors for prolonged in vivo lifetime.
    Balaconis MK; Clark HA
    J Diabetes Sci Technol; 2013 Jan; 7(1):53-61. PubMed ID: 23439160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors.
    Nishitani S; Tran T; Puglise A; Yang S; Landry MP
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202311476. PubMed ID: 37990059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared nanosensors enable optical imaging of oxytocin with selectivity over vasopressin in acute mouse brain slices.
    Mun J; Navarro N; Jeong S; Ouassil N; Leem E; Beyene AG; Landry MP
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2314795121. PubMed ID: 38905241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-Templated Molecular Recognition Platforms for Detection of Biological Analytes.
    Beyene AG; Demirer GS; Landry MP
    Curr Protoc Chem Biol; 2016 Sep; 8(3):197-223. PubMed ID: 27622569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection.
    Ledesma F; Nishitani S; Cunningham FJ; Hubbard JD; Yim D; Lui A; Chio L; Murali A; Landry MP
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A near-infrared optical nanosensor for measuring aerobic respiration in microbial systems.
    Saccomano SC; Cash KJ
    Analyst; 2021 Dec; 147(1):120-129. PubMed ID: 34854441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors.
    Ulissi ZW; Sen F; Gong X; Sen S; Iverson N; Boghossian AA; Godoy LC; Wogan GN; Mukhopadhyay D; Strano MS
    Nano Lett; 2014 Aug; 14(8):4887-94. PubMed ID: 25029087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing.
    Satishkumar BC; Brown LO; Gao Y; Wang CC; Wang HL; Doorn SK
    Nat Nanotechnol; 2007 Sep; 2(9):560-4. PubMed ID: 18654368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection.
    Mescheryakova SA; Matlakhov IS; Strokin PD; Drozd DD; Goryacheva IY; Goryacheva OA
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo.
    Koman VB; Bakh NA; Jin X; Nguyen FT; Son M; Kozawa D; Lee MA; Bisker G; Dong J; Strano MS
    Nat Nanotechnol; 2022 Jun; 17(6):643-652. PubMed ID: 35637357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.
    Diao S; Blackburn JL; Hong G; Antaris AL; Chang J; Wu JZ; Zhang B; Cheng K; Kuo CJ; Dai H
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14758-62. PubMed ID: 26460151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared optical sensors based on single-walled carbon nanotubes.
    Barone PW; Baik S; Heller DA; Strano MS
    Nat Mater; 2005 Jan; 4(1):86-92. PubMed ID: 15592477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes.
    Heller DA; Jin H; Martinez BM; Patel D; Miller BM; Yeung TK; Jena PV; Höbartner C; Ha T; Silverman SK; Strano MS
    Nat Nanotechnol; 2009 Feb; 4(2):114-20. PubMed ID: 19197314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.