These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30480448)

  • 1. Probing Amino Acid Interaction with a Polystyrene Nanoparticle Surface Using Saturation-Transfer Difference (STD)-NMR.
    Zhang Y; Casabianca LB
    J Phys Chem Lett; 2018 Dec; 9(23):6921-6925. PubMed ID: 30480448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing driving forces for binding between nanoparticles and amino acids by saturation-transfer difference NMR.
    Xu H; Casabianca LB
    Sci Rep; 2020 Jul; 10(1):12351. PubMed ID: 32704150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between cyanine dye IR-783 and polystyrene nanoparticles in solution.
    Zhang Y; Xu H; Casabianca LB
    Magn Reson Chem; 2018 Nov; 56(11):1054-1060. PubMed ID: 29771468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the retention mechanism of small hydrophilic molecules in hydrophilic interaction chromatography using saturation transfer difference nuclear magnetic resonance spectroscopy.
    Shamshir A; Dinh NP; Jonsson T; Sparrman T; Irgum K
    J Chromatogr A; 2020 Jul; 1623():461130. PubMed ID: 32505268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Dynamic Properties of a Ti-Binding Peptide Bound to TiO2 Nanoparticles As Accessed by (1)H NMR Spectroscopy.
    Suzuki Y; Shindo H; Asakura T
    J Phys Chem B; 2016 May; 120(20):4600-7. PubMed ID: 27138325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation and adsorption of human carbonic anhydrase II by nanoparticles.
    Assarsson A; Pastoriza-Santos I; Cabaleiro-Lago C
    Langmuir; 2014 Aug; 30(31):9448-56. PubMed ID: 24999988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monomer-collagen interactions studied by saturation transfer difference NMR.
    Hiraishi N; Tochio N; Kigawa T; Otsuki M; Tagami J
    J Dent Res; 2013 Mar; 92(3):284-8. PubMed ID: 23340212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.
    Razvag Y; Gutkin V; Reches M
    Langmuir; 2013 Aug; 29(32):10102-9. PubMed ID: 23859476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of 2-hydroxyethyl methacrylate in the interaction of dental monomers with collagen studied by saturation transfer difference NMR.
    Hiraishi N; Tochio N; Kigawa T; Otsuki M; Tagami J
    J Dent; 2014 Apr; 42(4):484-9. PubMed ID: 24440604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening nucleotide binding to amino acid-coated supports by surface plasmon resonance and nuclear magnetic resonance.
    Cruz C; Cabrita EJ; Queiroz JA
    Anal Bioanal Chem; 2011 Aug; 401(3):983-93. PubMed ID: 21644018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Fatty Acids on Metoprolol - Human Serum Albumin Interaction in Low Affinity Binding Sites: A Multifactorial NMR Approach.
    Szkudlarek A; Mogielnicki M; Pentak D; Ploch A; Maciazek-Jurczyk M
    Protein Pept Lett; 2018; 25(3):285-294. PubMed ID: 29336242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures.
    Chan AT; Lewis JA
    Langmuir; 2005 Sep; 21(19):8576-9. PubMed ID: 16142928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of the role of protein corona in cellular delivery of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2014 Oct; 35(30):8703-10. PubMed ID: 25005681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.
    Holinga GJ; York RL; Onorato RM; Thompson CM; Webb NE; Yoon AP; Somorjai GA
    J Am Chem Soc; 2011 Apr; 133(16):6243-53. PubMed ID: 21452815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and covalent binding of fibrinogen as a method for probing the chemical composition of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microsphere surfaces.
    Gosecka M; Chehimi MM; Basinska T; Slomkowski S; Makowski T
    Colloids Surf B Biointerfaces; 2017 Dec; 160():438-445. PubMed ID: 28985605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and biological evaluation of functionalized polystyrene particles.
    Yu L; Fei X
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5814-22. PubMed ID: 23882841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.
    Mitzel MR; Sand S; Whalen JK; Tufenkji N
    Water Res; 2016 Apr; 92():113-20. PubMed ID: 26845456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle flotation collectors--the influence of particle softness.
    Yang S; Razavizadeh BB; Pelton R; Bruin G
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4836-42. PubMed ID: 23692163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.