These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30480694)

  • 21. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.
    Annamalai A; Lee HH; Choi SH; Lee SY; Gracia-Espino E; Subramanian A; Park J; Kong KJ; Jang JS
    Sci Rep; 2016 Mar; 6():23183. PubMed ID: 27005757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-Organic Framework-Derived p-Cu
    Wu J; Huang P; Fan H; Wang G; Liu W
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30304-30312. PubMed ID: 32543170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enabling high low-bias performance of Fe
    Xiao J; Li C; Jia X; Du B; Li R; Wang B
    J Colloid Interface Sci; 2023 Mar; 633():555-565. PubMed ID: 36470136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertically Aligned CdO-Decked α-Fe
    Alhabradi M; Nundy S; Ghosh A; Tahir AA
    ACS Omega; 2022 Aug; 7(32):28396-28407. PubMed ID: 35990474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FeO-Based Hierarchical Structures on FTO Substrates and Their Photocurrent.
    Xia W; Sun J; Zeng X; Wang P; Luo M; Dong J; Yu H
    ACS Omega; 2020 Feb; 5(5):2205-2213. PubMed ID: 32064381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.
    Kim do H; Andoshe DM; Shim YS; Moon CW; Sohn W; Choi S; Kim TL; Lee M; Park H; Hong K; Kwon KC; Suh JM; Kim JS; Lee JH; Jang HW
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23793-800. PubMed ID: 27551887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of
    Xing XS; Zhou Z; Song P; Song X; Ren X; Zhang D; Zeng X; Guo Y; Du J
    Dalton Trans; 2023 Sep; 52(35):12308-12317. PubMed ID: 37591825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.