These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 30480846)
1. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. Wang G; Kong J; Cui D; Zhao H; Niu Y; Xu M; Jiang G; Zhao Y; Wang W Plant J; 2019 Mar; 97(6):1032-1047. PubMed ID: 30480846 [TBL] [Abstract][Full Text] [Related]
2. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. Liu W; Wang Y; Ji T; Wang C; Shi Q; Li C; Wei JW; Gong B New Phytol; 2024 Nov; 244(4):1537-1551. PubMed ID: 39253785 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. Ishihara T; Mitsuhara I; Takahashi H; Nakaho K PLoS One; 2012; 7(10):e46763. PubMed ID: 23071630 [TBL] [Abstract][Full Text] [Related]
4. Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato. French E; Kim BS; Rivera-Zuluaga K; Iyer-Pascuzzi AS Mol Plant Microbe Interact; 2018 Apr; 31(4):432-444. PubMed ID: 29153016 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Chen N; Shao Q; Lu Q; Li X; Gao Y Sci Rep; 2022 Dec; 12(1):22137. PubMed ID: 36550145 [TBL] [Abstract][Full Text] [Related]
6. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. Jacobs JM; Babujee L; Meng F; Milling A; Allen C mBio; 2012; 3(4):. PubMed ID: 22807564 [TBL] [Abstract][Full Text] [Related]
8. Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Caldwell D; Kim BS; Iyer-Pascuzzi AS Phytopathology; 2017 May; 107(5):528-536. PubMed ID: 28112595 [TBL] [Abstract][Full Text] [Related]
9. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Hyakumachi M; Nishimura M; Arakawa T; Asano S; Yoshida S; Tsushima S; Takahashi H Microbes Environ; 2013; 28(1):128-34. PubMed ID: 23257909 [TBL] [Abstract][Full Text] [Related]
10. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. Jacobs JM; Milling A; Mitra RM; Hogan CS; Ailloud F; Prior P; Allen C mBio; 2013 Nov; 4(6):e00875-13. PubMed ID: 24281716 [TBL] [Abstract][Full Text] [Related]
11. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. Milling A; Babujee L; Allen C PLoS One; 2011 Jan; 6(1):e15853. PubMed ID: 21253019 [TBL] [Abstract][Full Text] [Related]
12. ETI signaling nodes are involved in resistance of Hawaii 7996 to Xu A; Wei L; Ke J; Peng C; Li P; Fan C; Yu X; Li B Plant Signal Behav; 2023 Dec; 18(1):2194747. PubMed ID: 36994774 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Analysis Reveals New Insights into the Bacterial Wilt Resistance Mechanism Mediated by Silicon in Tomato. Jiang N; Fan X; Lin W; Wang G; Cai K Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30754671 [TBL] [Abstract][Full Text] [Related]
14. A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Khokhani D; Lowe-Power TM; Tran TM; Allen C mBio; 2017 Sep; 8(5):. PubMed ID: 28951474 [TBL] [Abstract][Full Text] [Related]
15. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Colburn-Clifford JM; Scherf JM; Allen C Appl Environ Microbiol; 2010 Nov; 76(22):7392-9. PubMed ID: 20870795 [TBL] [Abstract][Full Text] [Related]
16. Metabolomic Profiling of the Host Response of Tomato ( Zeiss DR; Mhlongo MI; Tugizimana F; Steenkamp PA; Dubery IA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31416118 [TBL] [Abstract][Full Text] [Related]
17. Integrative transcriptomic analysis unveils lncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. Si X; Liu H; Cheng X; Xu C; Han Z; Dai Z; Wang R; Pan C; Lu G Int J Biol Macromol; 2023 Dec; 253(Pt 3):126891. PubMed ID: 37709224 [TBL] [Abstract][Full Text] [Related]
18. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Wei Y; Caceres-Moreno C; Jimenez-Gongora T; Wang K; Sang Y; Lozano-Duran R; Macho AP Plant Biotechnol J; 2018 Jul; 16(7):1349-1362. PubMed ID: 29265643 [TBL] [Abstract][Full Text] [Related]
19. Tomato Root Transformation Followed by Inoculation with Ralstonia Solanacearum for Straightforward Genetic Analysis of Bacterial Wilt Disease. Morcillo RJL; Zhao A; Tamayo-Navarrete MI; García-Garrido JM; Macho AP J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225152 [TBL] [Abstract][Full Text] [Related]
20. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato. Shi J; Shui D; Su S; Xiong Z; Zai W BMC Genomics; 2023 Mar; 24(1):159. PubMed ID: 36991339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]