These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 30480850)
1. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation. Xu H; Sommer S; Broge NLN; Gao J; Iversen BB Chemistry; 2019 Feb; 25(8):2051-2058. PubMed ID: 30480850 [TBL] [Abstract][Full Text] [Related]
2. Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with Firth FCN; Gaultois MW; Wu Y; Stratford JM; Keeble DS; Grey CP; Cliffe MJ J Am Chem Soc; 2021 Dec; 143(47):19668-19683. PubMed ID: 34784470 [TBL] [Abstract][Full Text] [Related]
3. A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection. Carboni M; Lin Z; Abney CW; Zhang T; Lin W Chemistry; 2014 Nov; 20(46):14965-70. PubMed ID: 25294005 [TBL] [Abstract][Full Text] [Related]
4. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Kalmutzki MJ; Hanikel N; Yaghi OM Sci Adv; 2018 Oct; 4(10):eaat9180. PubMed ID: 30310868 [TBL] [Abstract][Full Text] [Related]
5. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. Kim J; Chen B; Reineke TM; Li H; Eddaoudi M; Moler DB; O'Keeffe M; Yaghi OM J Am Chem Soc; 2001 Aug; 123(34):8239-47. PubMed ID: 11516275 [TBL] [Abstract][Full Text] [Related]
6. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals. He T; Xu X; Ni B; Wang H; Long Y; Hu W; Wang X Nanoscale; 2017 Dec; 9(48):19209-19215. PubMed ID: 29188246 [TBL] [Abstract][Full Text] [Related]
7. UiO-66-NH Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990 [TBL] [Abstract][Full Text] [Related]
8. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. Park SS; Hendon CH; Fielding AJ; Walsh A; O'Keeffe M; Dincă M J Am Chem Soc; 2017 Mar; 139(10):3619-3622. PubMed ID: 28240898 [TBL] [Abstract][Full Text] [Related]
9. Building Co Guo GC; Zhao JP; Guo S; Shi WX; Liu FC; Lu TB; Zhang ZM Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202402374. PubMed ID: 38655601 [TBL] [Abstract][Full Text] [Related]
10. Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal-Organic Frameworks. Schoedel A; Rajeh S Top Curr Chem (Cham); 2020 Feb; 378(1):19. PubMed ID: 32009212 [TBL] [Abstract][Full Text] [Related]
11. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO Zhang JW; Hu MC; Li SN; Jiang YC; Zhai QG Dalton Trans; 2017 Jan; 46(3):836-844. PubMed ID: 28001155 [TBL] [Abstract][Full Text] [Related]
12. Autocatalysis and Oriented Attachment Direct the Synthesis of a Metal-Organic Framework. Dighe AV; Huelsenbeck L; Bhawnani RR; Verma P; Stone KH; Singh MR; Giri G JACS Au; 2022 Feb; 2(2):453-462. PubMed ID: 35252994 [TBL] [Abstract][Full Text] [Related]
13. Metal-organic frameworks constructed from versatile [WS4Cu(x)](x-2) units: micropores in highly interpenetrated systems. Lu ZZ; Zhang R; Pan ZR; Li YZ; Guo ZJ; Zheng HG Chemistry; 2012 Mar; 18(10):2812-24. PubMed ID: 22307561 [TBL] [Abstract][Full Text] [Related]
15. Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks. Muldoon PF; Liu C; Miller CC; Koby SB; Gamble Jarvi A; Luo TY; Saxena S; O'Keeffe M; Rosi NL J Am Chem Soc; 2018 May; 140(20):6194-6198. PubMed ID: 29719954 [TBL] [Abstract][Full Text] [Related]
16. A Series of Mesoporous Rare-Earth Metal-Organic Frameworks Constructed from Organic Secondary Building Units. Lv XL; Feng L; Wang KY; Xie LH; He T; Wu W; Li JR; Zhou HC Angew Chem Int Ed Engl; 2021 Jan; 60(4):2053-2057. PubMed ID: 33038039 [TBL] [Abstract][Full Text] [Related]
17. Structural Transitions of the Metal-Oxide Nodes within Metal-Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Platero-Prats AE; Mavrandonakis A; Gallington LC; Liu Y; Hupp JT; Farha OK; Cramer CJ; Chapman KW J Am Chem Soc; 2016 Mar; 138(12):4178-85. PubMed ID: 26926342 [TBL] [Abstract][Full Text] [Related]
18. Molecular driving forces for water adsorption in MOF-808: A comparative analysis with UiO-66. Frank HO; Paesani F J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426523 [TBL] [Abstract][Full Text] [Related]
19. Water as a structure-driving agent between the UiO-66 and MIL-140A metal-organic frameworks. Butova VV; Budnyk AP; Charykov KM; Vetlitsyna-Novikova KS; Lamberti C; Soldatov AV Chem Commun (Camb); 2019 Jan; 55(7):901-904. PubMed ID: 30520891 [TBL] [Abstract][Full Text] [Related]
20. Isolation of the Secondary Building Unit of a 3D Metal-Organic Framework through Clip-Off Chemistry, and Its Reuse To Synthesize New Frameworks by Dynamic Covalent Chemistry. Nam D; Albalad J; Sánchez-Naya R; Ruiz-Relaño S; Cortés-Martínez A; Yang Y; Juanhuix J; Imaz I; Maspoch D J Am Chem Soc; 2024 Oct; 146(40):27255-27261. PubMed ID: 39348446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]