These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 30481009)

  • 1. An Improved Strategy for Fluorescent Tagging of Membrane Proteins for Overexpression and Purification in Mammalian Cells.
    Rana MS; Wang X; Banerjee A
    Biochemistry; 2018 Dec; 57(49):6741-6751. PubMed ID: 30481009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of fluorescent protein tagging in structural studies of membrane proteins.
    Kermani AA
    FEBS J; 2024 Jul; 291(13):2719-2732. PubMed ID: 37470714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-detection size-exclusion chromatography utilizing nanobody technology for expression screening of membrane proteins.
    Jin F; Shen C; Wang Y; Wang M; Sun M; Hattori M
    Commun Biol; 2021 Mar; 4(1):366. PubMed ID: 33742097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae.
    Lee S; Lim WA; Thorn KS
    PLoS One; 2013; 8(7):e67902. PubMed ID: 23844123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel.
    Li P; Slimko EM; Lester HA
    FEBS Lett; 2002 Sep; 528(1-3):77-82. PubMed ID: 12297283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent probe for high-throughput screening of membrane protein expression.
    Backmark AE; Olivier N; Snijder A; Gordon E; Dekker N; Ferguson AD
    Protein Sci; 2013 Aug; 22(8):1124-32. PubMed ID: 23776061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.
    Han Z; Jin L; Chen F; Loturco JJ; Cohen LB; Bondar A; Lazar J; Pieribone VA
    PLoS One; 2014; 9(11):e113873. PubMed ID: 25419571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.
    Cui Y; Gao C; Zhao Q; Jiang L
    Methods Mol Biol; 2016; 1474():113-23. PubMed ID: 27515077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice.
    Rhee JM; Pirity MK; Lackan CS; Long JZ; Kondoh G; Takeda J; Hadjantonakis AK
    Genesis; 2006 Apr; 44(4):202-18. PubMed ID: 16604528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.
    Goehring A; Lee CH; Wang KH; Michel JC; Claxton DP; Baconguis I; Althoff T; Fischer S; Garcia KC; Gouaux E
    Nat Protoc; 2014 Nov; 9(11):2574-85. PubMed ID: 25299155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells.
    Jin L; Baker B; Mealer R; Cohen L; Pieribone V; Pralle A; Hughes T
    J Neurosci Methods; 2011 Jul; 199(1):1-9. PubMed ID: 21497167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy.
    Navarro-Borelly L; Somasundaram A; Yamashita M; Ren D; Miller RJ; Prakriya M
    J Physiol; 2008 Nov; 586(22):5383-401. PubMed ID: 18832420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits.
    Mervine SM; Yost EA; Sabo JL; Hynes TR; Berlot CH
    Mol Pharmacol; 2006 Jul; 70(1):194-205. PubMed ID: 16641313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Monitoring of
    Zaborskyte G; Andersen JB; Kragh KN; Ciofu O
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 27993856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Expression of Recombinant Membrane-eGFP Fusion Proteins in HEK293 Cells.
    Pieprzyk J; Pazicky S; Löw C
    Methods Mol Biol; 2018; 1850():17-31. PubMed ID: 30242677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering green fluorescent protein as a dual functional tag.
    Paramban RI; Bugos RC; Su WW
    Biotechnol Bioeng; 2004 Jun; 86(6):687-97. PubMed ID: 15137081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.