These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30481019)

  • 1. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems.
    Wang Q; Zou J; Xu E; Pulay P; Li S
    J Chem Theory Comput; 2019 Jan; 15(1):141-153. PubMed ID: 30481019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Implementation of Block-Correlated Coupled Cluster Theory Based on the Generalized Valence Bond Reference for Strongly Correlated Systems.
    Zou J; Wang Q; Ren X; Wang Y; Zhang H; Li S
    J Chem Theory Comput; 2022 Sep; 18(9):5276-5285. PubMed ID: 35922401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Block correlated second order perturbation theory with a generalized valence bond reference function.
    Xu E; Li S
    J Chem Phys; 2013 Nov; 139(17):174111. PubMed ID: 24206291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbitals that are unrestricted in active pairs for generalized valence bond coupled cluster methods.
    Lawler KV; Small DW; Head-Gordon M
    J Phys Chem A; 2010 Mar; 114(8):2930-8. PubMed ID: 20141227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces.
    Lei Y; Suo B; Liu W
    J Chem Theory Comput; 2021 Aug; 17(8):4846-4859. PubMed ID: 34314180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient implementation of time-dependent linear-response theory for strongly orthogonal geminal wave function models.
    Hapka M; Pernal K; Jensen HJA
    J Chem Phys; 2022 May; 156(17):174102. PubMed ID: 35525665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.
    Guo Y; Sivalingam K; Valeev EF; Neese F
    J Chem Phys; 2016 Mar; 144(9):094111. PubMed ID: 26957161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of molecular orbitals on fragments.
    Sax AF
    J Comput Chem; 2012 Jun; 33(17):1495-510. PubMed ID: 22522607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Selection of Active Orbitals from Generalized Valence Bond Orbitals.
    Zou J; Niu K; Ma H; Li S; Fang W
    J Phys Chem A; 2020 Oct; 124(40):8321-8329. PubMed ID: 32894939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local orbitals by minimizing powers of the orbital variance.
    Jansík B; Høst S; Kristensen K; Jørgensen P
    J Chem Phys; 2011 May; 134(19):194104. PubMed ID: 21599041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Electronic Structure of Molecules from Generalized Valence Bond Theory.
    Dunning TH; Xu LT; Takeshita TY; Lindquist BA
    J Phys Chem A; 2016 Mar; 120(11):1763-78. PubMed ID: 26909685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Perplexing Nature of the Bonding in C2 from Generalized Valence Bond Calculations.
    Xu LT; Dunning TH
    J Chem Theory Comput; 2014 Jan; 10(1):195-201. PubMed ID: 26579902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the GVB Ansatz to develop ensemble DFT method for describing multiple strongly correlated electron pairs.
    Filatov M; Martínez TJ; Kim KS
    Phys Chem Chem Phys; 2016 Aug; 18(31):21040-50. PubMed ID: 26947515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet and triplet instability theorems.
    Yamada T; Hirata S
    J Chem Phys; 2015 Sep; 143(11):114112. PubMed ID: 26395692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cautionary tale: Problems in the valence-CASSCF description of the ground state (X
    Xu LT; Dunning TH
    J Chem Phys; 2020 Sep; 153(11):114113. PubMed ID: 32962390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
    Sayfutyarova ER; Sun Q; Chan GK; Knizia G
    J Chem Theory Comput; 2017 Sep; 13(9):4063-4078. PubMed ID: 28731706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.
    Schmidt MW; Hull EA; Windus TL
    J Phys Chem A; 2015 Oct; 119(41):10408-27. PubMed ID: 26430954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets.
    Pokhilko P; Izmodenov D; Krylov AI
    J Chem Phys; 2020 Jan; 152(3):034105. PubMed ID: 31968973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.