These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30481036)

  • 41. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.
    Kang M; Park SG; Jeong KH
    Sci Rep; 2015 Oct; 5():14790. PubMed ID: 26469768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection.
    Lee K; Irudayaraj J
    Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence.
    Volpati D; Spada ER; Plá Cid CC; Sartorelli ML; Aroca RF; Constantino CJ
    Analyst; 2015 Jan; 140(2):476-82. PubMed ID: 25416536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface-enhanced Raman scattering studies of Cu/Cu
    Dizajghorbani Aghdam H; Moemen Bellah S; Malekfar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117379. PubMed ID: 31323492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SERS study of surface plasmon resonance induced carrier movement in Au@Cu
    Chen L; Zhang F; Deng XY; Xue X; Wang L; Sun Y; Feng JD; Zhang Y; Wang Y; Jung YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():608-612. PubMed ID: 28886507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoexcited Plasmon-Driven Ultrafast Dynamics of the Adsorbate Probed by Femtosecond Time-Resolved Surface-Enhanced Time-Domain Raman Spectroscopy.
    Kumar P; Kuramochi H; Takeuchi S; Tahara T
    J Phys Chem Lett; 2023 Mar; 14(11):2845-2853. PubMed ID: 36916655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.
    Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y
    Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles.
    Arnob MM; Zhao F; Zeng J; Santos GM; Li M; Shih WC
    Nanoscale; 2014 Nov; 6(21):12470-5. PubMed ID: 25204420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform.
    Mun C; Linh VTN; Kwon JD; Jung HS; Kim DH; Park SG
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30995760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication.
    Chang TW; Gartia MR; Seo S; Hsiao A; Liu GL
    Nanotechnology; 2014 Apr; 25(14):145304. PubMed ID: 24633089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers.
    Moula G; Aroca RF
    Anal Chem; 2011 Jan; 83(1):284-8. PubMed ID: 21138285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.