These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
907 related articles for article (PubMed ID: 30481186)
1. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991 [TBL] [Abstract][Full Text] [Related]
3. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. Tsai TT; Patel UD; Chang TI; Kennedy KF; Masoudi FA; Matheny ME; Kosiborod M; Amin AP; Weintraub WS; Curtis JP; Messenger JC; Rumsfeld JS; Spertus JA J Am Heart Assoc; 2014 Dec; 3(6):e001380. PubMed ID: 25516439 [TBL] [Abstract][Full Text] [Related]
4. Validation of National Cardiovascular Data Registry risk models for mortality, bleeding and acute kidney injury in interventional cardiology at a German Heart Center. Wolff G; Lin Y; Quade J; Bader S; Kosejian L; Brockmeyer M; Karathanos A; Parco C; Krieger T; Heinen Y; Perings S; Albert A; Icks A; Kelm M; Schulze V Clin Res Cardiol; 2020 Feb; 109(2):235-245. PubMed ID: 31236693 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of a Model for Predicting the Risk of Acute Kidney Injury Associated With Contrast Volume Levels During Percutaneous Coronary Intervention. Huang C; Li SX; Mahajan S; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM JAMA Netw Open; 2019 Nov; 2(11):e1916021. PubMed ID: 31755952 [TBL] [Abstract][Full Text] [Related]
6. Machine learning prediction model of acute kidney injury after percutaneous coronary intervention. Kuno T; Mikami T; Sahashi Y; Numasawa Y; Suzuki M; Noma S; Fukuda K; Kohsaka S Sci Rep; 2022 Jan; 12(1):749. PubMed ID: 35031637 [TBL] [Abstract][Full Text] [Related]
7. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. Tsai TT; Patel UD; Chang TI; Kennedy KF; Masoudi FA; Matheny ME; Kosiborod M; Amin AP; Messenger JC; Rumsfeld JS; Spertus JA JACC Cardiovasc Interv; 2014 Jan; 7(1):1-9. PubMed ID: 24456715 [TBL] [Abstract][Full Text] [Related]
8. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention. Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564 [TBL] [Abstract][Full Text] [Related]
9. Performance and Validation of the U.S. NCDR Acute Kidney Injury Prediction Model in Japan. Inohara T; Kohsaka S; Miyata H; Ueda I; Maekawa Y; Fukuda K; Cohen DJ; Kennedy KF; Rumsfeld JS; Spertus JA J Am Coll Cardiol; 2016 Apr; 67(14):1715-22. PubMed ID: 27056778 [TBL] [Abstract][Full Text] [Related]
10. Machine learning models for prediction of adverse events after percutaneous coronary intervention. Niimi N; Shiraishi Y; Sawano M; Ikemura N; Inohara T; Ueda I; Fukuda K; Kohsaka S Sci Rep; 2022 Apr; 12(1):6262. PubMed ID: 35428765 [TBL] [Abstract][Full Text] [Related]
11. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
13. Contemporary Methods for Predicting Acute Kidney Injury After Coronary Intervention. Uzendu A; Kennedy K; Chertow G; Amin AP; Giri JS; Rymer JA; Bangalore S; Lavin K; Anderson C; Wang TY; Curtis JP; Spertus JA JACC Cardiovasc Interv; 2023 Sep; 16(18):2294-2305. PubMed ID: 37758384 [TBL] [Abstract][Full Text] [Related]
14. Enhanced mortality risk prediction with a focus on high-risk percutaneous coronary intervention: results from 1,208,137 procedures in the NCDR (National Cardiovascular Data Registry). Brennan JM; Curtis JP; Dai D; Fitzgerald S; Khandelwal AK; Spertus JA; Rao SV; Singh M; Shaw RE; Ho KK; Krone RJ; Weintraub WS; Weaver WD; Peterson ED; JACC Cardiovasc Interv; 2013 Aug; 6(8):790-9. PubMed ID: 23968699 [TBL] [Abstract][Full Text] [Related]
15. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study. Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452 [TBL] [Abstract][Full Text] [Related]
16. Predictive modeling for acute kidney injury after percutaneous coronary intervention in patients with acute coronary syndrome: a machine learning approach. Behnoush AH; Shariatnia MM; Khalaji A; Asadi M; Yaghoobi A; Rezaee M; Soleimani H; Sheikhy A; Aein A; Yadangi S; Jenab Y; Masoudkabir F; Mehrani M; Iskander M; Hosseini K Eur J Med Res; 2024 Jan; 29(1):76. PubMed ID: 38268045 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study. Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200 [TBL] [Abstract][Full Text] [Related]
18. Comparative Performance of Prediction Models for Contrast-Associated Acute Kidney Injury After Percutaneous Coronary Intervention. Ma B; Allen DW; Graham MM; Har BJ; Tyrrell B; Tan Z; Spertus JA; Brown JR; Matheny ME; Hemmelgarn BR; Pannu N; James MT Circ Cardiovasc Qual Outcomes; 2019 Nov; 12(11):e005854. PubMed ID: 31722540 [TBL] [Abstract][Full Text] [Related]
19. Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. Amin AP; Bach RG; Caruso ML; Kennedy KF; Spertus JA JAMA Cardiol; 2017 Sep; 2(9):1007-1012. PubMed ID: 28678988 [TBL] [Abstract][Full Text] [Related]
20. Blood Transfusion and the Risk of Acute Kidney Injury Among Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Karrowni W; Vora AN; Dai D; Wojdyla D; Dakik H; Rao SV Circ Cardiovasc Interv; 2016 Sep; 9(9):. PubMed ID: 27582110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]