These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]
4. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM; East JM; Lee AG Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699 [TBL] [Abstract][Full Text] [Related]
5. Partition of Positively and Negatively Charged Tryptophan Ions in Membranes with Inverted Phospholipid Heads: Simulations and Experiments. Cardenas AE; Anderson CM; Elber R; Webb LJ J Phys Chem B; 2019 Apr; 123(15):3272-3281. PubMed ID: 30912653 [TBL] [Abstract][Full Text] [Related]
6. Specific interactions of tryptophan with phosphatidylcholine and digalactosyldiacylglycerol in pure and mixed bilayers in the dry and hydrated state. Popova AV; Hincha DK Chem Phys Lipids; 2004 Dec; 132(2):171-84. PubMed ID: 15555603 [TBL] [Abstract][Full Text] [Related]
7. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related]
8. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions. Vostrikov VV; Koeppe RE Biochemistry; 2011 Sep; 50(35):7522-35. PubMed ID: 21800919 [TBL] [Abstract][Full Text] [Related]
9. Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments. Nencini R; Ollila OHS J Phys Chem B; 2022 Sep; 126(36):6955-6963. PubMed ID: 36063117 [TBL] [Abstract][Full Text] [Related]
10. A transmembrane potential does not affect the vertical location of charged lipid spin labels with respect to the surface of a phosphatidylcholine bilayer. Jo E; Boggs JM Biochim Biophys Acta; 1994 Nov; 1195(2):245-51. PubMed ID: 7947917 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions. Aliste MP; MacCallum JL; Tieleman DP Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230 [TBL] [Abstract][Full Text] [Related]
12. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer. Shigematsu D; Matsutani M; Furuya T; Kiyota T; Lee S; Sugihara G; Yamashita S Biochim Biophys Acta; 2002 Aug; 1564(1):271-80. PubMed ID: 12101022 [TBL] [Abstract][Full Text] [Related]
13. The preference of tryptophan for membrane interfaces. Yau WM; Wimley WC; Gawrisch K; White SH Biochemistry; 1998 Oct; 37(42):14713-8. PubMed ID: 9778346 [TBL] [Abstract][Full Text] [Related]
14. Computer simulations of the diffusion of Na Salih R; Matthai CC J Chem Phys; 2017 Mar; 146(10):105101. PubMed ID: 28298128 [TBL] [Abstract][Full Text] [Related]
15. Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing effects of cholesterol and charged lipids. Thomae AV; Koch T; Panse C; Wunderli-Allenspach H; Krämer SD Pharm Res; 2007 Aug; 24(8):1457-72. PubMed ID: 17387599 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions. Róg T; Murzyn K; Pasenkiewicz-Gierula M Acta Biochim Pol; 2003; 50(3):789-98. PubMed ID: 14515159 [TBL] [Abstract][Full Text] [Related]
17. Unassisted N-acetyl-phenylalanine-amide transport across membrane with varying lipid size and composition: kinetic measurements and atomistic molecular dynamics simulation. Lee BL; Kuczera K; Lee KH; Childs EW; Jas GS J Biomol Struct Dyn; 2022 Mar; 40(4):1445-1460. PubMed ID: 33034537 [TBL] [Abstract][Full Text] [Related]
18. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations. Posokhov YO; Kyrychenko A Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
20. Site of action of the local anesthetic tetracaine in a phosphatidylcholine bilayer with incorporated cardiolipin. Shibata A; Ikawa K; Terada H Biophys J; 1995 Aug; 69(2):470-7. PubMed ID: 8527661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]