These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30481567)

  • 1. Investigating the Role of SNARE Proteins in Trafficking of Postsynaptic Receptors using Conditional Knockouts.
    Bin NR; Huang M; Sugita S
    Neuroscience; 2019 Nov; 420():22-31. PubMed ID: 30481567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial Role of Postsynaptic Syntaxin 4 in Mediating Basal Neurotransmission and Synaptic Plasticity in Hippocampal CA1 Neurons.
    Bin NR; Ma K; Harada H; Tien CW; Bergin F; Sugita K; Luyben TT; Narimatsu M; Jia Z; Wrana JL; Monnier PP; Zhang L; Okamoto K; Sugita S
    Cell Rep; 2018 Jun; 23(10):2955-2966. PubMed ID: 29874582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syntaxin-3 is dispensable for basal neurotransmission and synaptic plasticity in postsynaptic hippocampal CA1 neurons.
    Shi S; Ma K; Bin NR; Harada H; Xie X; Huang M; Liu H; Lee S; Wang XF; Adachi R; Monnier PP; Zhang L; Sugita S
    Sci Rep; 2020 Jan; 10(1):709. PubMed ID: 31959797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms.
    Arendt KL; Zhang Y; Jurado S; Malenka RC; Südhof TC; Chen L
    Neuron; 2015 Apr; 86(2):442-56. PubMed ID: 25843403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic SNARE Proteins: Role in Synaptic Transmission and Plasticity.
    Madrigal MP; Portalés A; SanJuan MP; Jurado S
    Neuroscience; 2019 Nov; 420():12-21. PubMed ID: 30458218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity.
    Araujo DJ; Toriumi K; Escamilla CO; Kulkarni A; Anderson AG; Harper M; Usui N; Ellegood J; Lerch JP; Birnbaum SG; Tucker HO; Powell CM; Konopka G
    J Neurosci; 2017 Nov; 37(45):10917-10931. PubMed ID: 28978667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal SNAP-23 is critical for synaptic plasticity and spatial memory independently of NMDA receptor regulation.
    Huang M; Bin NR; Rai J; Ma K; Chow CH; Eide S; Harada H; Xiao J; Feng D; Sun HS; Feng ZP; Gaisano HY; Pessin JE; Monnier PP; Okamoto K; Zhang L; Sugita S
    iScience; 2023 May; 26(5):106664. PubMed ID: 37168570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early events in glutamate receptor trafficking.
    Vandenberghe W; Bredt DS
    Curr Opin Cell Biol; 2004 Apr; 16(2):134-9. PubMed ID: 15196555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of syntaxin 4 in activity-dependent exocytosis and synaptic plasticity in hippocampal neurons.
    Mohanasundaram P; Shanmugam MM
    Sci Signal; 2010 Oct; 3(144):jc7. PubMed ID: 20959521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons.
    Maher BJ; Mackinnon RL; Bai J; Chapman ER; Kelly PT
    J Neurophysiol; 2005 Jan; 93(1):178-88. PubMed ID: 15604462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism.
    Jiang M; Polepalli J; Chen LY; Zhang B; Südhof TC; Malenka RC
    Mol Psychiatry; 2017 Mar; 22(3):375-383. PubMed ID: 27217145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.
    Wheal HV; Chen Y; Mitchell J; Schachner M; Maerz W; Wieland H; Van Rossum D; Kirsch J
    Prog Neurobiol; 1998 Aug; 55(6):611-40. PubMed ID: 9670221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast AMPAR trafficking for a high-frequency synaptic transmission.
    Choquet D
    Eur J Neurosci; 2010 Jul; 32(2):250-60. PubMed ID: 20646044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the SNARE complex mediating the exocytosis of NMDA receptors.
    Gu Y; Huganir RL
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12280-12285. PubMed ID: 27791016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate receptor trafficking in synaptic plasticity.
    Contractor A; Heinemann SF
    Sci STKE; 2002 Oct; 2002(156):re14. PubMed ID: 12407224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity.
    Cho RW; Buhl LK; Volfson D; Tran A; Li F; Akbergenova Y; Littleton JT
    Neuron; 2015 Nov; 88(4):749-61. PubMed ID: 26590346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of postsynaptic glutamate receptor targeting.
    Chen L; Tracy T; Nam CI
    Curr Opin Neurobiol; 2007 Feb; 17(1):53-8. PubMed ID: 17161597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
    Chiang CW; Chang CW; Jackson MB
    J Neurosci; 2018 Aug; 38(32):7179-7191. PubMed ID: 30012692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Functions of Syntaxin-1 in Neuronal Maintenance, Synaptic Vesicle Docking, and Fusion in Mouse Neurons.
    Vardar G; Chang S; Arancillo M; Wu YJ; Trimbuch T; Rosenmund C
    J Neurosci; 2016 Jul; 36(30):7911-24. PubMed ID: 27466336
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.