These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2683 related articles for article (PubMed ID: 30481607)
1. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
2. Application of 3D Printing Technology in Bone Tissue Engineering: A Review. Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886 [TBL] [Abstract][Full Text] [Related]
3. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Ansari MAA; Golebiowska AA; Dash M; Kumar P; Jain PK; Nukavarapu SP; Ramakrishna S; Nanda HS Biomater Sci; 2022 May; 10(11):2789-2816. PubMed ID: 35510605 [TBL] [Abstract][Full Text] [Related]
4. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Li JJ; Dunstan CR; Entezari A; Li Q; Steck R; Saifzadeh S; Sadeghpour A; Field JR; Akey A; Vielreicher M; Friedrich O; Roohani-Esfahani SI; Zreiqat H Adv Healthc Mater; 2019 Apr; 8(8):e1801298. PubMed ID: 30773833 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
6. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670 [TBL] [Abstract][Full Text] [Related]
7. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration. Metz C; Duda GN; Checa S Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications. Rindone AN; Nyberg E; Grayson WL Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213 [TBL] [Abstract][Full Text] [Related]
9. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419 [TBL] [Abstract][Full Text] [Related]
10. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068 [TBL] [Abstract][Full Text] [Related]
11. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
12. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
13. Challenges in Three-Dimensional Printing of Bone Substitutes. Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596 [TBL] [Abstract][Full Text] [Related]
14. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Roohani-Esfahani SI; Newman P; Zreiqat H Sci Rep; 2016 Jan; 6():19468. PubMed ID: 26782020 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
16. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
17. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
18. Personalized 3D printed bone scaffolds: A review. Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670 [TBL] [Abstract][Full Text] [Related]
19. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325 [TBL] [Abstract][Full Text] [Related]
20. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]