These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30481936)

  • 1. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas].
    Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936
    [No Abstract]   [Full Text] [Related]  

  • 2. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis].
    Zhang Z; Xie J; Zhong W; Liang F; Yang R; Zhen X
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):138-145. PubMed ID: 38293985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma.
    Rapp M; Heinzel A; Galldiks N; Stoffels G; Felsberg J; Ewelt C; Sabel M; Steiger HJ; Reifenberger G; Beez T; Coenen HH; Floeth FW; Langen KJ
    J Nucl Med; 2013 Feb; 54(2):229-35. PubMed ID: 23232275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection.
    Felefly T; Roukoz C; Fares G; Achkar S; Yazbeck S; Meyer P; Kordahi M; Azoury F; Nasr DN; Nasr E; Noël G; Francis Z
    J Digit Imaging; 2023 Dec; 36(6):2335-2346. PubMed ID: 37507581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [An MRI multi-sequence feature imputation and fusion mutual-aid model based on sequence deletion for differentiation of high-grade from low-grade glioma].
    Wu C; Zhong W; Xie J; Yang R; Wu Y; Xu Y; Wang L; Zhen X
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Aug; 44(8):1561-1570. PubMed ID: 39276052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas.
    Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A
    Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas.
    Alis D; Bagcilar O; Senli YD; Isler C; Yergin M; Kocer N; Islak C; Kizilkilic O
    Clin Radiol; 2020 May; 75(5):351-357. PubMed ID: 31973941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas.
    Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O
    Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma.
    Yu J; Shi Z; Lian Y; Li Z; Liu T; Gao Y; Wang Y; Chen L; Mao Y
    Eur Radiol; 2017 Aug; 27(8):3509-3522. PubMed ID: 28004160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors.
    Server A; Josefsen R; Kulle B; Maehlen J; Schellhorn T; Gadmar Ø; Kumar T; Haakonsen M; Langberg CW; Nakstad PH
    Acta Radiol; 2010 Apr; 51(3):316-25. PubMed ID: 20092374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential diagnosis of central lymphoma and high-grade glioma: dynamic contrast-enhanced histogram.
    Zhang HW; Lyu GW; He WJ; Lei Y; Lin F; Feng YN; Wang MZ
    Acta Radiol; 2020 Sep; 61(9):1221-1227. PubMed ID: 31902220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma.
    Zhang S; Chiang GC; Magge RS; Fine HA; Ramakrishna R; Chang EW; Pulisetty T; Wang Y; Zhu W; Kovanlikaya I
    Magn Reson Imaging; 2019 Apr; 57():254-258. PubMed ID: 30465868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic accuracy of MRI texture analysis for grading gliomas.
    Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A
    J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas.
    Han Y; Xie Z; Zang Y; Zhang S; Gu D; Zhou M; Gevaert O; Wei J; Li C; Chen H; Du J; Liu Z; Dong D; Tian J; Zhou D
    J Neurooncol; 2018 Nov; 140(2):297-306. PubMed ID: 30097822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.