These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30481936)

  • 21. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.
    Sengupta A; Agarwal S; Gupta PK; Ahlawat S; Patir R; Gupta RK; Singh A
    Eur J Radiol; 2018 Sep; 106():199-208. PubMed ID: 30150045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of high grade glioma and solitary brain metastases by measuring relative cerebral blood volume and fractional anisotropy: a systematic review and meta-analysis of MRI diagnostic test accuracy studies.
    Fioni F; Chen SJ; Lister INE; Ghalwash AA; Long MZ
    Br J Radiol; 2023 Jan; 96(1141):20220052. PubMed ID: 36278795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.
    Murayama K; Nishiyama Y; Hirose Y; Abe M; Ohyu S; Ninomiya A; Fukuba T; Katada K; Toyama H
    Magn Reson Med Sci; 2018 Jan; 17(1):42-49. PubMed ID: 28515410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiating solitary brain metastases from high-grade gliomas with MR: comparing qualitative versus quantitative diagnostic strategies.
    Voicu IP; Pravatà E; Panara V; Navarra R; Mattei PA; Caulo M
    Radiol Med; 2022 Aug; 127(8):891-898. PubMed ID: 35763250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of High-Grade Glioma and Intracranial Metastasis Using Volumetric Diffusion Tensor Imaging Tractography.
    Holly KS; Fitz-Gerald JS; Barker BJ; Murcia D; Daggett R; Ledbetter C; Gonzalez-Toledo E; Sun H
    World Neurosurg; 2018 Dec; 120():e131-e141. PubMed ID: 30165214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study.
    Tiwari P; Prasanna P; Wolansky L; Pinho M; Cohen M; Nayate AP; Gupta A; Singh G; Hatanpaa KJ; Sloan A; Rogers L; Madabhushi A
    AJNR Am J Neuroradiol; 2016 Dec; 37(12):2231-2236. PubMed ID: 27633806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.
    Sauwen N; Acou M; Van Cauter S; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Van Huffel S
    Neuroimage Clin; 2016; 12():753-764. PubMed ID: 27812502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiparametric MRI in differentiating solitary brain metastasis from high-grade glioma: diagnostic value of the combined use of diffusion-weighted imaging, dynamic susceptibility contrast imaging, and magnetic resonance spectroscopy parameters.
    Aslan K; Gunbey HP; Tomak L; Incesu L
    Neurol Neurochir Pol; 2019; 53(3):227-237. PubMed ID: 31180131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative glioma grading using transformed gray-scale invariant textures of MRI.
    Li-Chun Hsieh K; Chen CY; Lo CM
    Comput Biol Med; 2017 Apr; 83():102-108. PubMed ID: 28254615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.
    Ortiz-Ramón R; Larroza A; Ruiz-España S; Arana E; Moratal D
    Eur Radiol; 2018 Nov; 28(11):4514-4523. PubMed ID: 29761357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma.
    Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB
    J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic Value of Fractal Analysis for the Differentiation of Brain Tumors Using 3-Tesla Magnetic Resonance Susceptibility-Weighted Imaging.
    Di Ieva A; Le Reste PJ; Carsin-Nicol B; Ferre JC; Cusimano MD
    Neurosurgery; 2016 Dec; 79(6):839-846. PubMed ID: 27332779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnostic accuracy of proton magnetic resonance spectroscopy and perfusion-weighted imaging in brain gliomas follow-up: a single institutional experience.
    Anselmi M; Catalucci A; Felli V; Vellucci V; Di Sibio A; Gravina GL; Di Staso M; Di Cesare E; Masciocchi C
    Neuroradiol J; 2017 Jun; 30(3):240-252. PubMed ID: 28627984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema.
    Server A; Kulle B; Maehlen J; Josefsen R; Schellhorn T; Kumar T; Langberg CW; Nakstad PH
    Acta Radiol; 2009 Jul; 50(6):682-9. PubMed ID: 19449234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes.
    Zhu FY; Sun YF; Yin XP; Zhang Y; Xing LH; Ma ZP; Xue LY; Wang JN
    Discov Oncol; 2023 Dec; 14(1):224. PubMed ID: 38055122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of magnetic resonance spectroscopy to differentiate high-grade gliomas from metastases.
    Wang Q; Zhang J; Xu W; Chen X; Zhang J; Xu B
    Tumour Biol; 2017 Jun; 39(6):1010428317710030. PubMed ID: 28631566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomic texture analysis based on neurite orientation dispersion and density imaging to differentiate glioblastoma from solitary brain metastasis.
    Bai J; He M; Gao E; Yang G; Yang H; Dong J; Ma X; Gao Y; Zhang H; Yan X; Zhang Y; Cheng J; Zhao G
    BMC Cancer; 2023 Dec; 23(1):1231. PubMed ID: 38098041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.