BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30482156)

  • 1. Identification of proteins responding to pathogen-infection in the red alga Pyropia yezoensis using iTRAQ quantitative proteomics.
    Khan S; Mao Y; Gao D; Riaz S; Niaz Z; Tang L; Khan S; Wang D
    BMC Genomics; 2018 Nov; 19(1):842. PubMed ID: 30482156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Detection of Red Rot Disease Pathogens (
    Lee SJ; Lee SR
    Plant Dis; 2022 Jan; 106(1):30-33. PubMed ID: 34491096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga
    Tang L; Qiu L; Liu C; Du G; Mo Z; Tang X; Mao Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31783543
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulatory role of external calcium on Pythium porphyrae (Oomycota) zoospore release, development and infection in causing red rot disease of Porphyra yezoensis (Rhodophyta).
    Addepalli MK; Fujita Y
    FEMS Microbiol Lett; 2002 Jun; 211(2):253-7. PubMed ID: 12076821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.
    Sun P; Mao Y; Li G; Cao M; Kong F; Wang L; Bi G
    BMC Genomics; 2015 Jun; 16(1):463. PubMed ID: 26081586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.
    Byeon Y; Yool Lee H; Choi DW; Back K
    J Exp Bot; 2015 Feb; 66(3):709-17. PubMed ID: 25183745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data.
    Zhang B; Xie X; Liu X; He L; Sun Y; Wang G
    BMC Plant Biol; 2020 Sep; 20(1):424. PubMed ID: 32933475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis.
    Uji T; Gondaira Y; Fukuda S; Mizuta H; Saga N
    Cell Stress Chaperones; 2019 Jan; 24(1):223-233. PubMed ID: 30632066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional Shifts of Bacterial Communities Associated With
    Yan YW; Yang HC; Tang L; Li J; Mao YX; Mo ZL
    Front Microbiol; 2019; 10():1666. PubMed ID: 31396184
    [No Abstract]   [Full Text] [Related]  

  • 10. Genome-Wide Identification and Analysis of
    Yu X; Tang L; Tang X; Mao Y
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896076
    [No Abstract]   [Full Text] [Related]  

  • 11. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.
    Wang L; Mao Y; Kong F; Li G; Ma F; Zhang B; Sun P; Bi G; Zhang F; Xue H; Cao M
    PLoS One; 2013; 8(5):e65902. PubMed ID: 23734264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis).
    Nakamura Y; Sasaki N; Kobayashi M; Ojima N; Yasuike M; Shigenobu Y; Satomi M; Fukuma Y; Shiwaku K; Tsujimoto A; Kobayashi T; Nakayama I; Ito F; Nakajima K; Sano M; Wada T; Kuhara S; Inouye K; Gojobori T; Ikeo K
    PLoS One; 2013; 8(3):e57122. PubMed ID: 23536760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An antifungal protein from the marine bacterium streptomyces sp. Strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp.
    Woo JH; Kitamura E; Myouga H; Kamei Y
    Appl Environ Microbiol; 2002 Jun; 68(6):2666-75. PubMed ID: 12039718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discolored Red Seaweed Pyropia yezoensis with Low Commercial Value Is a Novel Resource for Production of Agar Polysaccharides.
    Sasuga K; Yamanashi T; Nakayama S; Ono S; Mikami K
    Mar Biotechnol (NY); 2018 Aug; 20(4):520-530. PubMed ID: 29696549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses.
    Sun P; Tang X; Bi G; Xu K; Kong F; Mao Y
    Mar Genomics; 2019 Feb; 43():43-49. PubMed ID: 30279127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis.
    Fukui Y; Abe M; Kobayashi M; Yano Y; Satomi M
    Microb Ecol; 2014 Oct; 68(3):556-66. PubMed ID: 24840921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Hyphomonas Strains on the Growth of Red Algae Pyropia Species by Attaching Specifically to Their Rhizoids.
    Fukui Y; Abe M; Kobayashi M
    Microb Ecol; 2023 Nov; 86(4):2502-2514. PubMed ID: 37369788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress.
    Shi J; Chen Y; Xu Y; Ji D; Chen C; Xie C
    Sci Rep; 2017 Mar; 7():44734. PubMed ID: 28303955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic diversity of 39 samples of Pyropia species grown in Japan.
    Nagano Y; Kimura K; Kobayashi G; Kawamura Y
    PLoS One; 2021; 16(6):e0252207. PubMed ID: 34106965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.
    Fu Y; Zhang H; Mandal SN; Wang C; Chen C; Ji W
    J Proteomics; 2016 Jan; 130():108-19. PubMed ID: 26381202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.