BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30483111)

  • 21. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses.
    Morishita W; Marie H; Malenka RC
    Nat Neurosci; 2005 Aug; 8(8):1043-50. PubMed ID: 16025109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca2+-permeable AMPA receptors.
    Kim S; Titcombe RF; Zhang H; Khatri L; Girma HK; Hofmann F; Arancio O; Ziff EB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3122-7. PubMed ID: 25713349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different AMPA receptor subtypes mediate the distinct kinetic components of a biphasic EPSC in hippocampal interneurons.
    Stincic TL; Frerking ME
    Front Synaptic Neurosci; 2015; 7():7. PubMed ID: 26042027
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Wu HF; Chen PS; Hsu YT; Lee CW; Wang TF; Chen YJ; Lin HC
    Mol Neurobiol; 2018 Jun; 55(6):4811-4824. PubMed ID: 28733898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca
    Purkey AM; Woolfrey KM; Crosby KC; Stich DG; Chick WS; Aoto J; Dell'Acqua ML
    Cell Rep; 2018 Oct; 25(4):974-987.e4. PubMed ID: 30355502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dysregulated NMDA-Receptor Signaling Inhibits Long-Term Depression in a Mouse Model of Fragile X Syndrome.
    Toft AK; Lundbye CJ; Banke TG
    J Neurosci; 2016 Sep; 36(38):9817-27. PubMed ID: 27656021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AMPAR exocytosis through NO modulation of PICK1.
    Sossa KG; Beattie JB; Carroll RC
    Neuropharmacology; 2007 Jul; 53(1):92-100. PubMed ID: 17555774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Polyamine-Dependent Facilitation of Calcium Permeable AMPARs in Short-Term Synaptic Enhancement.
    Rozov A; Zakharova Y; Vazetdinova A; Valiullina-Rakhmatullina F
    Front Cell Neurosci; 2018; 12():345. PubMed ID: 30364146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses.
    Peng Y; Zhao J; Gu QH; Chen RQ; Xu Z; Yan JZ; Wang SH; Liu SY; Chen Z; Lu W
    Hippocampus; 2010 May; 20(5):646-58. PubMed ID: 19489005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors.
    Xiong CH; Liu MG; Zhao LX; Chen MW; Tang L; Yan YH; Chen HZ; Qiu Y
    Neuropharmacology; 2019 Mar; 146():242-251. PubMed ID: 30529302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms coordinating functional and morphological plasticity at the synapse: role of GluA2/N-cadherin interaction-mediated actin signaling in mGluR-dependent LTD.
    Asrar S; Jia Z
    Cell Signal; 2013 Feb; 25(2):397-402. PubMed ID: 23153583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do Alcohol-Related AMPA-Type Glutamate Receptor Adaptations Promote Intake?
    Woodward Hopf F; Mangieri RA
    Handb Exp Pharmacol; 2018; 248():157-186. PubMed ID: 29675583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NSF binds calcium to regulate its interaction with AMPA receptor subunit GluR2.
    Hanley JG
    J Neurochem; 2007 Jun; 101(6):1644-50. PubMed ID: 17302911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.
    Gerace E; Masi A; Resta F; Felici R; Landucci E; Mello T; Pellegrini-Giampietro DE; Mannaioni G; Moroni F
    Neurobiol Dis; 2014 Oct; 70():43-52. PubMed ID: 24954469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PACSIN1 regulates the dynamics of AMPA receptor trafficking.
    Widagdo J; Fang H; Jang SE; Anggono V
    Sci Rep; 2016 Aug; 6():31070. PubMed ID: 27488904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome.
    Achuta VS; Möykkynen T; Peteri UK; Turconi G; Rivera C; Keinänen K; Castrén ML
    Sci Signal; 2018 Jan; 11(513):. PubMed ID: 29339535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of NADPH oxidase as a key mediator in the post-ischemia-induced sequestration and degradation of the GluA2 AMPA receptor subunit.
    Beske PH; Byrnes NM; Astruc-Diaz F; Jackson DA
    J Neurochem; 2015 Mar; 132(5):504-19. PubMed ID: 25475532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome.
    Nosyreva ED; Huber KM
    J Neurophysiol; 2006 May; 95(5):3291-5. PubMed ID: 16452252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of hippocampal long term depression by Neuroligin 1.
    Dang R; Qi J; Liu A; Ren Q; Lv D; Han L; Zhou Z; Cao F; Xie W; Jia Z
    Neuropharmacology; 2018 Dec; 143():205-216. PubMed ID: 30266599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inflammation-induced GluA1 trafficking and membrane insertion of Ca
    Wigerblad G; Huie JR; Yin HZ; Leinders M; Pritchard RA; Koehrn FJ; Xiao WH; Bennett GJ; Huganir RL; Ferguson AR; Weiss JH; Svensson CI; Sorkin LS
    Exp Neurol; 2017 Jul; 293():144-158. PubMed ID: 28412220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.