These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30483279)

  • 1. Artificial Intelligence Understands Peptide Observability and Assists With Absolute Protein Quantification.
    Zimmer D; Schneider K; Sommer F; Schroda M; Mühlhaus T
    Front Plant Sci; 2018; 9():1559. PubMed ID: 30483279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.
    Qeli E; Omasits U; Goetze S; Stekhoven DJ; Frey JE; Basler K; Wollscheid B; Brunner E; Ahrens CH
    J Proteomics; 2014 Aug; 108():269-83. PubMed ID: 24878426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches.
    Eyers CE; Lawless C; Wedge DC; Lau KW; Gaskell SJ; Hubbard SJ
    Mol Cell Proteomics; 2011 Nov; 10(11):M110.003384. PubMed ID: 21813416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepMSPeptide: peptide detectability prediction using deep learning.
    Serrano G; Guruceaga E; Segura V
    Bioinformatics; 2020 Feb; 36(4):1279-1280. PubMed ID: 31529040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of peptides observable by mass spectrometry applied at the experimental set level.
    Sanders WS; Bridges SM; McCarthy FM; Nanduri B; Burgess SC
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S23. PubMed ID: 18047723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics.
    Timm W; Scherbart A; Böcker S; Kohlbacher O; Nattkemper TW
    BMC Bioinformatics; 2008 Oct; 9():443. PubMed ID: 18937839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AP3: An Advanced Proteotypic Peptide Predictor for Targeted Proteomics by Incorporating Peptide Digestibility.
    Gao Z; Chang C; Yang J; Zhu Y; Fu Y
    Anal Chem; 2019 Jul; 91(13):8705-8711. PubMed ID: 31247716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and Prediction of Human Proteotypic Peptide Stability for Proteomics Quantification.
    Chiva C; Elhamraoui Z; Solé A; Serret M; Wilhelm M; Sabidó E
    Anal Chem; 2023 Sep; 95(37):13746-13749. PubMed ID: 37676919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of an LC-MS/MS method for the simultaneous quantification of human intestinal transporter proteins absolute abundance using a QconCAT technique.
    Harwood MD; Achour B; Russell MR; Carlson GL; Warhurst G; Rostami-Hodjegan A
    J Pharm Biomed Anal; 2015 Jun; 110():27-33. PubMed ID: 25796981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT.
    Rivers J; Simpson DM; Robertson DH; Gaskell SJ; Beynon RJ
    Mol Cell Proteomics; 2007 Aug; 6(8):1416-27. PubMed ID: 17510050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes.
    Pratt JM; Simpson DM; Doherty MK; Rivers J; Gaskell SJ; Beynon RJ
    Nat Protoc; 2006; 1(2):1029-43. PubMed ID: 17406340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics.
    Mirzaei H; McBee JK; Watts J; Aebersold R
    Mol Cell Proteomics; 2008 Apr; 7(4):813-23. PubMed ID: 18089551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics.
    Li YF; Arnold RJ; Tang H; Radivojac P
    J Proteome Res; 2010 Dec; 9(12):6288-97. PubMed ID: 21067214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Typic: A Practical and Robust Tool to Rank Proteotypic Peptides for Targeted Proteomics.
    Pauletti BA; Granato DC; M Carnielli C; Câmara GA; Normando AGC; Telles GP; Leme AFP
    J Proteome Res; 2023 Feb; 22(2):539-545. PubMed ID: 36480281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on physicochemical properties governing peptide MS1 response in HPLC-ESI-MS/MS: A deep learning approach.
    Abdul-Khalek N; Wimmer R; Overgaard MT; Gregersen Echers S
    Comput Struct Biotechnol J; 2023; 21():3715-3727. PubMed ID: 37560124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.
    Dittrich J; Ceglarek U
    Methods Mol Biol; 2017; 1619():417-430. PubMed ID: 28674901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute two-point quantification of proteins using dimethylated proteotypic peptides.
    Tran TT; Bollineni RC; Koehler CJ; Thiede B
    Analyst; 2018 Sep; 143(18):4359-4365. PubMed ID: 30112540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments.
    Mohammed Y; Domański D; Jackson AM; Smith DS; Deelder AM; Palmblad M; Borchers CH
    J Proteomics; 2014 Jun; 106():151-61. PubMed ID: 24769191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.