These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30483279)

  • 21. DeepDetect: Deep Learning of Peptide Detectability Enhanced by Peptide Digestibility and Its Application to DIA Library Reduction.
    Yang J; Cheng Z; Gong F; Fu Y
    Anal Chem; 2023 Apr; 95(15):6235-6243. PubMed ID: 36908083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass spectrometry-based absolute protein quantification: PSAQ™ strategy makes use of "noncanonical" proteotypic peptides.
    Jaquinod M; Trauchessec M; Huillet C; Louwagie M; Lebert D; Picard G; Adrait A; Dupuis A; Garin J; Brun V; Bruley C
    Proteomics; 2012 Apr; 12(8):1217-21. PubMed ID: 22577023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide Selection for Accurate Targeted Protein Quantification via a Dimethylation High-Resolution Mass Spectrum Strategy with a Peptide Release Kinetic Model.
    Chen Q; Jiang Y; Ren Y; Ying M; Lu B
    ACS Omega; 2020 Mar; 5(8):3809-3819. PubMed ID: 32149207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry.
    Dittrich J; Becker S; Hecht M; Ceglarek U
    Proteomics Clin Appl; 2015 Feb; 9(1-2):5-16. PubMed ID: 25418444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.
    Jarnuczak AF; Lee DC; Lawless C; Holman SW; Eyers CE; Hubbard SJ
    J Proteome Res; 2016 Sep; 15(9):2945-59. PubMed ID: 27454336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MSQ: a tool for quantification of proteomics data generated by a liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry based targeted quantitative proteomics platform.
    Oh JH; Pan S; Zhang J; Gao J
    Rapid Commun Mass Spectrom; 2010 Feb; 24(4):403-8. PubMed ID: 20069694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics.
    Webb-Robertson BJ; Cannon WR; Oehmen CS; Shah AR; Gurumoorthi V; Lipton MS; Waters KM
    Bioinformatics; 2008 Jul; 24(13):1503-9. PubMed ID: 18453551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DbyDeep: Exploration of MS-Detectable Peptides via Deep Learning.
    Son J; Na S; Paek E
    Anal Chem; 2023 Aug; 95(30):11193-11200. PubMed ID: 37459568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute Quantification of Major Photosynthetic Protein Complexes in
    Hammel A; Zimmer D; Sommer F; Mühlhaus T; Schroda M
    Front Plant Sci; 2018; 9():1265. PubMed ID: 30214453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and expression of a QconCAT protein to validate Hi3 protein quantification of influenza vaccine antigens.
    Smith DG; Gingras G; Aubin Y; Cyr TD
    J Proteomics; 2016 Sep; 146():133-40. PubMed ID: 27343760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.
    Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X
    Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abundance-based classifier for the prediction of mass spectrometric peptide detectability upon enrichment (PPA).
    Muntel J; Boswell SA; Tang S; Ahmed S; Wapinski I; Foley G; Steen H; Springer M
    Mol Cell Proteomics; 2015 Feb; 14(2):430-40. PubMed ID: 25473088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational approach toward label-free protein quantification using predicted peptide detectability.
    Tang H; Arnold RJ; Alves P; Xun Z; Clemmer DE; Novotny MV; Reilly JP; Radivojac P
    Bioinformatics; 2006 Jul; 22(14):e481-8. PubMed ID: 16873510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LFAQ: Toward Unbiased Label-Free Absolute Protein Quantification by Predicting Peptide Quantitative Factors.
    Chang C; Gao Z; Ying W; Fu Y; Zhao Y; Wu S; Li M; Wang G; Qian X; Zhu Y; He F
    Anal Chem; 2019 Jan; 91(2):1335-1343. PubMed ID: 30525483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags.
    Fahlman RP; Chen W; Overall CM
    J Proteomics; 2014 Apr; 100():79-91. PubMed ID: 24060996
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.