These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30483367)

  • 1. EEG classification of driver mental states by deep learning.
    Zeng H; Yang C; Dai G; Qin F; Zhang J; Kong W
    Cogn Neurodyn; 2018 Dec; 12(6):597-606. PubMed ID: 30483367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification.
    Zeng H; Yang C; Zhang H; Wu Z; Zhang J; Dai G; Babiloni F; Kong W
    Comput Intell Neurosci; 2019; 2019():3761203. PubMed ID: 31611912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning.
    Gupta A; Siddhad G; Pandey V; Roy PP; Kim BG
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
    Wang F; Chen D; Yao W; Fu R
    J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional Correlation Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.
    Li Y; Xiang J; Kesavadas T
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2681-2690. PubMed ID: 33201824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
    Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generative adaptive convolutional neural network with attention mechanism for driver fatigue detection with class-imbalanced and insufficient data.
    He L; Zhang L; Sun Q; Lin X
    Behav Brain Res; 2024 Apr; 464():114898. PubMed ID: 38382711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using long short term memory and convolutional neural networks for driver drowsiness detection.
    Quddus A; Shahidi Zandi A; Prest L; Comeau FJE
    Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-Conv architecture.
    Xu G; Guo W; Wang Y
    Med Biol Eng Comput; 2023 Jan; 61(1):61-73. PubMed ID: 36322243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG.
    Cui J; Lan Z; Liu Y; Li R; Li F; Sourina O; Müller-Wittig W
    Methods; 2022 Jun; 202():173-184. PubMed ID: 33901644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network.
    Cui J; Lan Z; Sourina O; Muller-Wittig W
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7921-7933. PubMed ID: 35171778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-based driver fatigue detection using hybrid deep generic model.
    Phyo Phyo San ; Sai Ho Ling ; Rifai Chai ; Tran Y; Craig A; Hung Nguyen
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():800-803. PubMed ID: 28268447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model.
    Zeng H; Wu Z; Zhang J; Yang C; Zhang H; Dai G; Kong W
    Brain Sci; 2019 Nov; 9(11):. PubMed ID: 31739605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Approach for Automatic Detection of Driver Fatigue Using EEG Signals Based on Graph Convolutional Networks.
    Ardabili SZ; Bahmani S; Lahijan LZ; Khaleghi N; Sheykhivand S; Danishvar S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CutCat: An augmentation method for EEG classification.
    Al-Saegh A; Dawwd SA; Abdul-Jabbar JM
    Neural Netw; 2021 Sep; 141():433-443. PubMed ID: 34147756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.