These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30483403)

  • 1. Relational concurrency, stages of infection, and the evolution of HIV set point viral load.
    Goodreau SM; Stansfield SE; Murphy JT; Peebles KC; Gottlieb GS; Abernethy NF; Herbeck JT; Mittler JE
    Virus Evol; 2018 Jul; 4(2):vey032. PubMed ID: 30483403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why does age at HIV infection correlate with set point viral load? An evolutionary hypothesis.
    Goodreau SM; Stansfield SE; Mittler JE; Murphy JT; Abernethy NF; Gottlieb GS; Reid MC; Burke JC; Pollock ED; Herbeck JT
    Epidemics; 2022 Dec; 41():100629. PubMed ID: 36162386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virus-induced target cell activation reconciles set-point viral load heritability and within-host evolution.
    Hool A; Leventhal GE; Bonhoeffer S
    Epidemics; 2013 Dec; 5(4):174-80. PubMed ID: 24267873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test-and-treat coverage and HIV virulence evolution among men who have sex with men.
    Stansfield SE; Herbeck JT; Gottlieb GS; Abernethy NF; Murphy JT; Mittler JE; Goodreau SM
    Virus Evol; 2021 Jan; 7(1):veab011. PubMed ID: 33633867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An HIV epidemic model based on viral load dynamics: value in assessing empirical trends in HIV virulence and community viral load.
    Herbeck JT; Mittler JE; Gottlieb GS; Mullins JI
    PLoS Comput Biol; 2014 Jun; 10(6):e1003673. PubMed ID: 24945322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable effect of co-infection on the HIV infectivity: within-host dynamics and epidemiological significance.
    Cuadros DF; García-Ramos G
    Theor Biol Med Model; 2012 Mar; 9():9. PubMed ID: 22429506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sexual risk behaviour and STI co-infection dynamics on the evolution of HIV set point viral load in MSM.
    Hendrickx DM; Delva W; Hens N
    Epidemics; 2021 Sep; 36():100474. PubMed ID: 34153622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic estimation of the viral fitness landscape of HIV-1 set-point viral load.
    Zhao L; Wymant C; Blanquart F; Golubchik T; Gall A; Bakker M; Bezemer D; Hall M; Ong SH; Albert J; Bannert N; Fellay J; Grabowski MK; Gunsenheimer-Bartmeyer B; Günthard HF; Kivelä P; Kouyos RD; Laeyendecker O; Meyer L; Porter K; van Sighem A; van der Valk M; Berkhout B; Kellam P; Cornelissen M; Reiss P; Fraser C; Ferretti L
    Virus Evol; 2022; 8(1):veac022. PubMed ID: 35402002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission selects for HIV-1 strains of intermediate virulence: a modelling approach.
    Shirreff G; Pellis L; Laeyendecker O; Fraser C
    PLoS Comput Biol; 2011 Oct; 7(10):e1002185. PubMed ID: 22022243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Pitfalls in Estimating Viral Load Heritability.
    Leventhal GE; Bonhoeffer S
    Trends Microbiol; 2016 Sep; 24(9):687-698. PubMed ID: 27185643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrency and HIV transmission network characteristics among MSM with recent HIV infection.
    Pines HA; Wertheim JO; Liu L; Garfein RS; Little SJ; Karris MY
    AIDS; 2016 Nov; 30(18):2875-2883. PubMed ID: 27662550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of HIV virulence in response to disease-modifying vaccines: A modeling study.
    Reid MC; Mittler JE; Murphy JT; Stansfield SE; Goodreau SM; Abernethy N; Herbeck JT
    Vaccine; 2023 Oct; 41(43):6461-6469. PubMed ID: 37714749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of concurrency, partner choice, and viral suppression on racial disparity in the prevalence of HIV infected women.
    Gurski KF; Hoffman KA
    Math Biosci; 2016 Dec; 282():91-108. PubMed ID: 27712990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polygyny and symmetric concurrency: comparing long-duration sexually transmitted infection prevalence using simulated sexual networks.
    Santhakumaran S; O'Brien K; Bakker R; Ealden T; Shafer LA; Daniel RM; Chapman R; Hayes RJ; White RG
    Sex Transm Infect; 2010 Dec; 86(7):553-8. PubMed ID: 20656724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of contact structure on the transient evolution of HIV virulence.
    Park SW; Bolker BM
    PLoS Comput Biol; 2017 Mar; 13(3):e1005453. PubMed ID: 28362805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short Communication: Discordance of HIV-1 Viral Load from Paired Blood and Seminal Plasma Samples in a Chinese Men Who Have Sex with Men Population.
    Zhang J; Wang N; He L; Pan X; Ding X
    AIDS Res Hum Retroviruses; 2019 Apr; 35(4):393-395. PubMed ID: 30411973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size matters: concurrency and the epidemic potential of HIV in small networks.
    Carnegie NB; Morris M
    PLoS One; 2012; 7(8):e43048. PubMed ID: 22937011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of combination packages for HIV-1 prevention in sub-Saharan Africa depends on partnership network structure: a mathematical modelling study.
    Jenness SM; Goodreau SM; Morris M; Cassels S
    Sex Transm Infect; 2016 Dec; 92(8):619-624. PubMed ID: 27288415
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.