BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30483600)

  • 1. ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series.
    Ruark E; Holt E; Renwick A; Münz M; Wakeling M; Ellard S; Mahamdallie S; Yost S; Rahman N
    Wellcome Open Res; 2018; 3():108. PubMed ID: 30483600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ICR142 NGS validation series: a resource for orthogonal assessment of NGS analysis.
    Ruark E; Renwick A; Clarke M; Snape K; Ramsay E; Elliott A; Hanks S; Strydom A; Seal S; Rahman N
    F1000Res; 2016; 5():386. PubMed ID: 27158454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking variant callers in next-generation and third-generation sequencing analysis.
    Pei S; Liu T; Ren X; Li W; Chen C; Xie Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32698196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery.
    Barbitoff YA; Abasov R; Tvorogova VE; Glotov AS; Predeus AV
    BMC Genomics; 2022 Feb; 23(1):155. PubMed ID: 35193511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of GATK and DeepVariant by trio sequencing.
    Lin YL; Chang PC; Hsu C; Hung MZ; Chien YH; Hwu WL; Lai F; Lee NC
    Sci Rep; 2022 Feb; 12(1):1809. PubMed ID: 35110657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data.
    Kumaran M; Subramanian U; Devarajan B
    BMC Bioinformatics; 2019 Jun; 20(1):342. PubMed ID: 31208315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OpEx - a validated, automated pipeline optimised for clinical exome sequence analysis.
    Ruark E; Münz M; Clarke M; Renwick A; Ramsay E; Elliott A; Seal S; Lunter G; Rahman N
    Sci Rep; 2016 Aug; 6():31029. PubMed ID: 27485037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of pipelines for mapping, variant calling and interval padding, for the analysis of NGS germline panels.
    Zanti M; Michailidou K; Loizidou MA; Machattou C; Pirpa P; Christodoulou K; Spyrou GM; Kyriacou K; Hadjisavvas A
    BMC Bioinformatics; 2021 Apr; 22(1):218. PubMed ID: 33910496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking workflows to assess performance and suitability of germline variant calling pipelines in clinical diagnostic assays.
    Krishnan V; Utiramerur S; Ng Z; Datta S; Snyder MP; Ashley EA
    BMC Bioinformatics; 2021 Feb; 22(1):85. PubMed ID: 33627090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes.
    Yeo ZX; Wong JC; Rozen SG; Lee AS
    BMC Genomics; 2014 Jun; 15(1):516. PubMed ID: 24962530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed comparison of two popular variant calling packages for exome and targeted exon studies.
    Warden CD; Adamson AW; Neuhausen SL; Wu X
    PeerJ; 2014; 2():e600. PubMed ID: 25289185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HELLO: improved neural network architectures and methodologies for small variant calling.
    Ramachandran A; Lumetta SS; Klee EW; Chen D
    BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Calling Performance of a Rare Disease NGS Panel for Single Nucleotide and Copy Number Variants.
    Cacheiro P; Ordóñez-Ugalde A; Quintáns B; Piñeiro-Hermida S; Amigo J; García-Murias M; Pascual-Pascual SI; Grandas F; Arpa J; Carracedo A; Sobrido MJ
    Mol Diagn Ther; 2017 Jun; 21(3):303-313. PubMed ID: 28290094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing.
    O'Rawe J; Jiang T; Sun G; Wu Y; Wang W; Hu J; Bodily P; Tian L; Hakonarson H; Johnson WE; Wei Z; Wang K; Lyon GJ
    Genome Med; 2013; 5(3):28. PubMed ID: 23537139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data.
    Schilbert HM; Rempel A; Pucker B
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32252268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic comparison of variant calling pipelines of target genome sequencing cross multiple next-generation sequencers.
    Feng B; Lai J; Fan X; Liu Y; Wang M; Wu P; Zhou Z; Yan Q; Sun L
    Front Genet; 2023; 14():1293974. PubMed ID: 38239851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and efficiency of germline variant calling pipelines for human genome data.
    Zhao S; Agafonov O; Azab A; Stokowy T; Hovig E
    Sci Rep; 2020 Nov; 10(1):20222. PubMed ID: 33214604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.