BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30483895)

  • 1. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response.
    Horodyska J; Reyer H; Wimmers K; Trakooljul N; Lawlor PG; Hamill RM
    Mol Genet Genomics; 2019 Apr; 294(2):395-408. PubMed ID: 30483895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism.
    Horodyska J; Wimmers K; Reyer H; Trakooljul N; Mullen AM; Lawlor PG; Hamill RM
    BMC Genomics; 2018 Nov; 19(1):791. PubMed ID: 30384851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I
    BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased expressions of genes and proteins involved in mitochondrial oxidation and antioxidant pathway in adipose tissue of pigs selected for a low residual feed intake.
    Louveau I; Vincent A; Tacher S; Gilbert H; Gondret F
    J Anim Sci; 2016 Dec; 94(12):5042-5054. PubMed ID: 28046150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig.
    Jégou M; Gondret F; Vincent A; Tréfeu C; Gilbert H; Louveau I
    PLoS One; 2016; 11(1):e0146550. PubMed ID: 26752050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response.
    Horodyska J; Hamill RM; Reyer H; Trakooljul N; Lawlor PG; McCormack UM; Wimmers K
    Front Genet; 2019; 10():117. PubMed ID: 30838035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake.
    Liu H; Nguyen YT; Nettleton D; Dekkers JC; Tuggle CK
    BMC Genomics; 2016 Jan; 17():73. PubMed ID: 26801403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Molecular Mechanisms Related to Pig Fatness at the Transcriptome and miRNAome Levels.
    Ropka-Molik K; Pawlina-Tyszko K; Żukowski K; Tyra M; Derebecka N; Wesoły J; Szmatoła T; Piórkowska K
    Genes (Basel); 2020 May; 11(6):. PubMed ID: 32485856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency.
    Vigors S; O'Doherty JV; Bryan K; Sweeney T
    BMC Genomics; 2019 Jun; 20(1):461. PubMed ID: 31170913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing.
    Xu J; Wang C; Jin E; Gu Y; Li S; Li Q
    Genes Genomics; 2018 Apr; 40(4):413-421. PubMed ID: 29892843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs.
    Messad F; Louveau I; Koffi B; Gilbert H; Gondret F
    BMC Genomics; 2019 Aug; 20(1):659. PubMed ID: 31419934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular alterations induced by a high-fat high-fiber diet in porcine adipose tissues: variations according to the anatomical fat location.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Louveau I; Causeur D
    BMC Genomics; 2016 Feb; 17():120. PubMed ID: 26892011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient supply alters transcriptome regulation in adipose tissue of pre-weaning Holstein calves.
    Leal LN; Romao JM; Hooiveld GJ; Soberon F; Berends H; Boekshoten MV; Van Amburgh ME; Martín-Tereso J; Steele MA
    PLoS One; 2018; 13(8):e0201929. PubMed ID: 30080895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq Analysis of Abdominal Fat Reveals Differences between Modern Commercial Broiler Chickens with High and Low Feed Efficiencies.
    Zhuo Z; Lamont SJ; Lee WR; Abasht B
    PLoS One; 2015; 10(8):e0135810. PubMed ID: 26295149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism.
    Resnyk CW; Chen C; Huang H; Wu CH; Simon J; Le Bihan-Duval E; Duclos MJ; Cogburn LA
    PLoS One; 2015; 10(10):e0139549. PubMed ID: 26445145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency.
    Lkhagvadorj S; Qu L; Cai W; Couture OP; Barb CR; Hausman GJ; Nettleton D; Anderson LL; Dekkers JC; Tuggle CK
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R494-507. PubMed ID: 19939971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.
    Vincent A; Louveau I; Gondret F; Tréfeu C; Gilbert H; Lefaucheur L
    J Anim Sci; 2015 Jun; 93(6):2745-58. PubMed ID: 26115262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity.
    Vigors S; Sweeney T; O'Shea CJ; Kelly AK; O'Doherty JV
    Animal; 2016 Nov; 10(11):1848-1855. PubMed ID: 27173889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.