These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30484053)

  • 1. Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism.
    Liu D; Yan X; Si M; Deng X; Min X; Shi Y; Chai L
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2761-2770. PubMed ID: 30484053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium
    Kumar M; Verma S; Gazara RK; Kumar M; Pandey A; Verma PK; Thakur IS
    Biotechnol Biofuels; 2018; 11():154. PubMed ID: 29991962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB.
    Kumar M; Singh J; Singh MK; Singhal A; Thakur IS
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15690-702. PubMed ID: 26018290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient polyhydroxyalkanoate production from lignin using genetically engineered Halomonas sp. Y3.
    Li YQ; Wang MJ; Luo CB
    Bioresour Technol; 2023 Feb; 370():128526. PubMed ID: 36572161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips.
    Chen YH; Chai LY; Zhu YH; Yang ZH; Zheng Y; Zhang H
    J Appl Microbiol; 2012 May; 112(5):900-6. PubMed ID: 22380656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application.
    Kumar M; Mishra A; Singh SS; Srivastava S; Thakur IS
    Int J Biol Macromol; 2018 Aug; 115():308-316. PubMed ID: 29665388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin.
    Morya R; Sharma A; Kumar M; Tyagi B; Singh SS; Thakur IS
    Bioresour Technol; 2021 Jan; 320(Pt B):124439. PubMed ID: 33246798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process.
    Chen Y; Chai L; Tang C; Yang Z; Zheng Y; Shi Y; Zhang H
    Bioresour Technol; 2012 Nov; 123():682-5. PubMed ID: 22921251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and Characterization of Polyhydroxyalkanoate from Lignin Derivatives by
    Kumar M; Singhal A; Verma PK; Thakur IS
    ACS Omega; 2017 Dec; 2(12):9156-9163. PubMed ID: 30023602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying ligninolytic bacteria for lignin valorization to bioplastics.
    Xu T; Zong QJ; Liu H; Wang L; Liu ZH; Li BZ; Yuan YJ
    Bioresour Technol; 2022 Aug; 358():127383. PubMed ID: 35644455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic insights into the metabolic potential of a novel lignin-degrading and polyhydroxyalkanoates producing bacterium Pseudomonas sp. Hu109A.
    Nawaz MZ; Shang H; Sun J; Geng A; Ali SS; Zhu D
    Chemosphere; 2023 Jan; 310():136754. PubMed ID: 36228733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized pulse-feeding fed-batch fermentation for enhanced lignin to polyhydroxyalkanoate transformation.
    Unrean P; Champreda V
    Biotechnol Prog; 2023 Jan; 39(1):e3302. PubMed ID: 36153640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential.
    Bandounas L; Wierckx NJ; de Winde JH; Ruijssenaars HJ
    BMC Biotechnol; 2011 Oct; 11():94. PubMed ID: 21995752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: Enzymatic and structural analysis.
    Kumar M; Singhal A; Thakur IS
    Bioresour Technol; 2016 Mar; 203():18-25. PubMed ID: 26720135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Funneling lignin-derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3.
    Tang H; Wang MJ; Gan XF; Li YQ
    Bioresour Technol; 2022 Oct; 362():127837. PubMed ID: 36031122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable PHA production in integrated lignocellulose biorefineries.
    Dietrich K; Dumont MJ; Del Rio LF; Orsat V
    N Biotechnol; 2019 Mar; 49():161-168. PubMed ID: 30465907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Lignin-Degrading Enzymes.
    Xiao J; Zhang S; Chen G
    Protein Pept Lett; 2020; 27(7):574-581. PubMed ID: 31868142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8.
    Shi Y; Chai L; Tang C; Yang Z; Zhang H; Chen R; Chen Y; Zheng Y
    Biotechnol Biofuels; 2013 Jan; 6(1):1. PubMed ID: 23298573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase-mediated synthesis of lignin-core hyperbranched copolymers.
    Cannatelli MD; Ragauskas AJ
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6343-6353. PubMed ID: 28589227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.