These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30484097)

  • 1. Molecular basis of vitamin D action in neurodegeneration: the story of a team perspective.
    Gezen-Ak D; Dursun E
    Hormones (Athens); 2019 Mar; 18(1):17-21. PubMed ID: 30484097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel perspective for Alzheimer's disease: vitamin D receptor suppression by amyloid-β and preventing the amyloid-β induced alterations by vitamin D in cortical neurons.
    Dursun E; Gezen-Ak D; Yilmazer S
    J Alzheimers Dis; 2011; 23(2):207-19. PubMed ID: 20966550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why vitamin D in Alzheimer's disease? The hypothesis.
    Gezen-Ak D; Yılmazer S; Dursun E
    J Alzheimers Dis; 2014; 40(2):257-69. PubMed ID: 24413618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin D Receptor Regulates Amyloid Beta 1-42 Production with Protein Disulfide Isomerase A3.
    Gezen-Ak D; Atasoy IL; Candaş E; Alaylioglu M; Yılmazer S; Dursun E
    ACS Chem Neurosci; 2017 Oct; 8(10):2335-2346. PubMed ID: 28707894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D3 action within the ovary - an updated review.
    Grzesiak M
    Physiol Res; 2020 Jul; 69(3):371-378. PubMed ID: 32469224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Vitamin D on amyloid precursor protein processing and amyloid-β peptide degradation in Alzheimer's disease.
    Grimm MO; Lehmann J; Mett J; Zimmer VC; Grösgen S; Stahlmann CP; Hundsdörfer B; Haupenthal VJ; Rothhaar TL; Herr C; Bals R; Grimm HS; Hartmann T
    Neurodegener Dis; 2014; 13(2-3):75-81. PubMed ID: 24192346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and neuronal injury in Alzheimer's disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise.
    Mattson MP
    Ann N Y Acad Sci; 1994 Dec; 747():50-76. PubMed ID: 7847692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,25-Dihydroxyvitamin D
    Kjalarsdottir L; Tersey SA; Vishwanath M; Chuang JC; Posner BA; Mirmira RG; Repa JJ
    J Steroid Biochem Mol Biol; 2019 Jan; 185():17-26. PubMed ID: 30071248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration.
    Gezen-Ak D; Dursun E
    J Alzheimers Dis; 2023; 95(4):1273-1299. PubMed ID: 37661883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of receptor topology in the vitamin D3 uptake and Ca(2+) response systems.
    Morrill GA; Kostellow AB; Gupta RK
    Biochem Biophys Res Commun; 2016 Sep; 477(4):834-840. PubMed ID: 27369077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ageing and vitamin D deficiency: effects on calcium homeostasis and considerations for vitamin D supplementation.
    Oudshoorn C; van der Cammen TJ; McMurdo ME; van Leeuwen JP; Colin EM
    Br J Nutr; 2009 Jun; 101(11):1597-606. PubMed ID: 19393111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of neuronal death in brain aging and Alzheimer's disease: role of endocrine-mediated calcium dyshomeostasis.
    Landfield PW; Thibault O; Mazzanti ML; Porter NM; Kerr DS
    J Neurobiol; 1992 Nov; 23(9):1247-60. PubMed ID: 1469387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis.
    Alzheimer's Association Calcium Hypothesis Workgroup
    Alzheimers Dement; 2017 Feb; 13(2):178-182.e17. PubMed ID: 28061328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered calcium signaling and neuronal injury: stroke and Alzheimer's disease as examples.
    Mattson MP; Rydel RE; Lieberburg I; Smith-Swintosky VL
    Ann N Y Acad Sci; 1993 May; 679():1-21. PubMed ID: 8512177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells.
    Neelankal John A; Jiang FX
    J Diabetes Complications; 2018 Apr; 32(4):429-443. PubMed ID: 29422234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D: Vitamin or Hormone?
    Ellison DL; Moran HR
    Nurs Clin North Am; 2021 Mar; 56(1):47-57. PubMed ID: 33549285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D deficiency and Alzheimer disease: Common links.
    Keeney JT; Butterfield DA
    Neurobiol Dis; 2015 Dec; 84():84-98. PubMed ID: 26160191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium signaling in Alzheimer's disease & therapies.
    Tong BC; Wu AJ; Li M; Cheung KH
    Biochim Biophys Acta Mol Cell Res; 2018 Nov; 1865(11 Pt B):1745-1760. PubMed ID: 30059692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D and the brain: Genomic and non-genomic actions.
    Cui X; Gooch H; Petty A; McGrath JJ; Eyles D
    Mol Cell Endocrinol; 2017 Sep; 453():131-143. PubMed ID: 28579120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection.
    Wu S; Sun J
    Discov Med; 2011 Apr; 11(59):325-35. PubMed ID: 21524386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.