These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30484437)

  • 1. Viscoelasticity measurement of ex vivo bovine cartilage using Lamb wave method.
    Xu H; Shi L; Chen S; Zhang X; An KN; Luo ZP
    Phys Med Biol; 2018 Nov; 63(23):235019. PubMed ID: 30484437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of viscoelasticity of ex vivo bovine cartilage using Rayleigh wave method in the near-source and far-field region.
    Xu H; Luo ZP
    J Biomech; 2021 Feb; 116():110252. PubMed ID: 33485145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.
    Xu H; Chen S; An KN; Luo ZP
    Biomed Eng Online; 2017 Oct; 16(1):123. PubMed ID: 29084547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model.
    Weng CC; Chen PY; Chou D; Shih CC; Huang CC
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2637-2644. PubMed ID: 33306463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.
    Nenadic IZ; Urban MW; Mitchell SA; Greenleaf JF
    Phys Med Biol; 2011 Apr; 56(7):2245-64. PubMed ID: 21403186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall.
    Nenadic IZ; Qiang B; Urban MW; de Araujo Vasconcelo LH; Nabavizadeh A; Alizad A; Greenleaf JF; Fatemi M
    Phys Med Biol; 2013 Apr; 58(8):2675-95. PubMed ID: 23552842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
    Chen X; Shen Y; Zheng Y; Lin H; Guo Y; Zhu Y; Zhang X; Wang T; Chen S
    Ultrasound Med Biol; 2013 Nov; 39(11):2091-102. PubMed ID: 23993170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity.
    Chen S; Urban MW; Pislaru C; Kinnick R; Zheng Y; Yao A; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):55-62. PubMed ID: 19213632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.
    Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H
    Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-specific ultrasound elastography using a multi-layered shear wave dispersion model for assessing the viscoelastic properties.
    Lu G; Li R; Qian X; Chen R; Jiang L; Chen Z; Kirk Shung K; Humayun MS; Zhou Q
    Phys Med Biol; 2021 Jan; 66(3):035003. PubMed ID: 33181500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric imaging of viscoelasticity using optical coherence elastography.
    Wijesinghe P; McLaughlin RA; Sampson DD; Kennedy BF
    Phys Med Biol; 2015 Mar; 60(6):2293-307. PubMed ID: 25715798
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Nenadic IZ; Urban MW; Pislaru C; Escobar D; Vasconcelos L; Greenleaf JF
    Biomed Phys Eng Express; 2018; 4(4):. PubMed ID: 30455983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the surface wave method and the indentation method for measuring the elasticity of gelatin phantoms of different concentrations.
    Zhang X; Qiang B; Greenleaf J
    Ultrasonics; 2011 Feb; 51(2):157-64. PubMed ID: 20800256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.