These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30484618)

  • 21. Calbindins decreased after space flight.
    Sergeev IN; Rhoten WB; Carney MD
    Endocrine; 1996 Dec; 5(3):335-40. PubMed ID: 11539285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. At the border: the plasma membrane-cell wall continuum.
    Liu Z; Persson S; Sánchez-Rodríguez C
    J Exp Bot; 2015 Mar; 66(6):1553-63. PubMed ID: 25697794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Possible mechanisms of plant cell wall changes at microgravity.
    Nedukha EM
    Adv Space Res; 1996; 17(6-7):37-45. PubMed ID: 11538635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.
    Aubry-Hivet D; Nziengui H; Rapp K; Oliveira O; Paponov IA; Li Y; Hauslage J; Vagt N; Braun M; Ditengou FA; Dovzhenko A; Palme K
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():129-41. PubMed ID: 24373012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant Cell Wall Proteomics as a Strategy to Reveal Candidate Proteins Involved in Extracellular Lipid Metabolism.
    Jacq A; Burlat V; Jamet E
    Curr Protein Pept Sci; 2018; 19(2):190-199. PubMed ID: 28925901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Workshop at Institute of Genetic Ecology, Tohoku University in November 1995: several aspects on the plant growth and development in space environment.
    Biol Sci Space; 1995 Dec; 9(4):303-63. PubMed ID: 11541890
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms.
    Schnabl H; Hunte C; Schulz M; Wolf D; Ghiena-Rahlenbeck C; Bramer M; Graab M; Janssen M; Kalweit H
    Microgravity Sci Technol; 1996; 9(4):275-80. PubMed ID: 11540169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures.
    Kamal KY; Hemmersbach R; Medina FJ; Herranz R
    Life Sci Space Res (Amst); 2015 Apr; 5():47-52. PubMed ID: 26177849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inositol 1,4,5-trisphosphate and Ran expression during simulated and real microgravity.
    Kriegs B; Theisen R; Schnabl H
    Protoplasma; 2006 Dec; 229(2-4):163-74. PubMed ID: 17180498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transporters for amino acids in plant cells: some functions and many unknowns.
    Tegeder M
    Curr Opin Plant Biol; 2012 Jun; 15(3):315-21. PubMed ID: 22366488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of microgravity-based proteomics research.
    Grimm D; Pietsch J; Wehland M; Richter P; Strauch SM; Lebert M; Magnusson NE; Wise P; Bauer J
    Expert Rev Proteomics; 2014 Aug; 11(4):465-76. PubMed ID: 24957700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Development Of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity.
    Ogneva IV; Belyakin SN; Sarantseva SV
    PLoS One; 2016; 11(11):e0166885. PubMed ID: 27861601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.
    Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ
    Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the plant cell wall in gravity resistance.
    Hoson T; Wakabayashi K
    Phytochemistry; 2015 Apr; 112():84-90. PubMed ID: 25236694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Editorial overview: a look into the workshop.
    Jürgens G; Berger F
    Curr Opin Plant Biol; 2002 Dec; 5(6):477-9. PubMed ID: 12393008
    [No Abstract]   [Full Text] [Related]  

  • 37. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity.
    Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E
    Plant Signal Behav; 2014; 9(9):e29637. PubMed ID: 25763699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome.
    Herranz R; Benguría A; Laván DA; López-Vidriero I; Gasset G; Javier Medina F; van Loon JJ; Marco R
    Mol Ecol; 2010 Oct; 19(19):4255-64. PubMed ID: 20819157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of sporopollenin synthesis for pollen wall formation in plant.
    Yang ZN
    Sci China Life Sci; 2016 Dec; 59(12):1335-1337. PubMed ID: 27864710
    [No Abstract]   [Full Text] [Related]  

  • 40. Plants in space.
    Halstead TW; Dutcher FR
    Annu Rev Plant Physiol; 1987; 38():317-45. PubMed ID: 11538459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.