These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 30484919)

  • 1. Surface Atomic Regulation of Core-Shell Noble Metal Catalysts.
    Ge J; Li Z; Hong X; Li Y
    Chemistry; 2019 Apr; 25(20):5113-5127. PubMed ID: 30484919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective.
    Li G; Tang Z
    Nanoscale; 2014 Apr; 6(8):3995-4011. PubMed ID: 24622876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed.
    Gilroy KD; Yang X; Xie S; Zhao M; Qin D; Xia Y
    Adv Mater; 2018 Jun; 30(25):e1706312. PubMed ID: 29656471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts.
    Wang L; Chen MX; Yan QQ; Xu SL; Chu SQ; Chen P; Lin Y; Liang HW
    Sci Adv; 2019 Oct; 5(10):eaax6322. PubMed ID: 31692785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective.
    Wang C; An C; Qin C; Gomaa H; Deng Q; Wu S; Hu N
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.
    Fan Z; Zhang H
    Acc Chem Res; 2016 Dec; 49(12):2841-2850. PubMed ID: 27993013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts.
    Garg A; Milina M; Ball M; Zanchet D; Hunt ST; Dumesic JA; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8828-8833. PubMed ID: 28544178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.
    Liu HL; Nosheen F; Wang X
    Chem Soc Rev; 2015 May; 44(10):3056-78. PubMed ID: 25793455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and "active support" Fe
    Baye AF; Appiah-Ntiamoah R; Kim H
    Sci Total Environ; 2020 Apr; 712():135492. PubMed ID: 31784174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells.
    Göhl D; Garg A; Paciok P; Mayrhofer KJJ; Heggen M; Shao-Horn Y; Dunin-Borkowski RE; Román-Leshkov Y; Ledendecker M
    Nat Mater; 2020 Mar; 19(3):287-291. PubMed ID: 31844277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nested Metal Catalysts: Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports.
    Gates BC; Katz A; Liu J
    Precis Chem; 2023 Mar; 1(1):3-13. PubMed ID: 37025973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates.
    Bao H; Zhang H; Zhou L; Liu G; Li Y; Cai W
    Langmuir; 2017 Nov; 33(45):12934-12942. PubMed ID: 29061051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement Effects in Zeolite-Confined Noble Metals.
    Wu SM; Yang XY; Janiak C
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12340-12354. PubMed ID: 30821890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realistic Surface Descriptions of Heterometallic Interfaces: The Case of TiWC Coated in Noble Metals.
    Hendon CH; Hunt ST; Milina M; Butler KT; Walsh A; Román-Leshkov Y
    J Phys Chem Lett; 2016 Nov; 7(22):4475-4482. PubMed ID: 27786468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.