These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 30484919)

  • 41. Architecture Design and Catalytic Activity: Non-Noble Bimetallic CoFe/fe
    Miao W; Hao R; Wang J; Wang Z; Lin W; Liu H; Feng Z; Lyu Y; Li Q; Jia D; Ouyang R; Cheng J; Nie A; Wu J
    Adv Sci (Weinh); 2023 Feb; 10(5):e2205087. PubMed ID: 36529701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles.
    Liu S; Regulacio MD; Tee SY; Khin YW; Teng CP; Koh LD; Guan G; Han MY
    Chem Rec; 2016 Aug; 16(4):1965-90. PubMed ID: 27291595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.
    Aslam U; Linic S
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43127-43132. PubMed ID: 29165979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomically dispersed supported metal catalysts.
    Flytzani-Stephanopoulos M; Gates BC
    Annu Rev Chem Biomol Eng; 2012; 3():545-74. PubMed ID: 22559871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles.
    Wan Y; Min YL; Yu SH
    Langmuir; 2008 May; 24(9):5024-8. PubMed ID: 18363416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts.
    Li X; Wang X; Song S; Liu D; Zhang H
    Chemistry; 2012 Jun; 18(24):7601-7. PubMed ID: 22508188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile Synthesis of Cu/NiCu Electrocatalysts Integrating Alloy, Core-Shell, and One-Dimensional Structures for Efficient Methanol Oxidation Reaction.
    Wu D; Zhang W; Cheng D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19843-19851. PubMed ID: 28537715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alchemy-Inspired Green Paper for Spontaneous Recovery of Noble Metals.
    Yao Y; Lan L; Li X; Liu X; Ying Y; Ping J
    Small; 2020 Aug; 16(33):e1907282. PubMed ID: 32583958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ferrous centers confined on core-shell nanostructures for low-temperature CO oxidation.
    Guo X; Fu Q; Ning Y; Wei M; Li M; Zhang S; Jiang Z; Bao X
    J Am Chem Soc; 2012 Aug; 134(30):12350-3. PubMed ID: 22812713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-atom catalysts: a new frontier in heterogeneous catalysis.
    Yang XF; Wang A; Qiao B; Li J; Liu J; Zhang T
    Acc Chem Res; 2013 Aug; 46(8):1740-8. PubMed ID: 23815772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications.
    Chai Y; Shang W; Li W; Wu G; Dai W; Guan N; Li L
    Adv Sci (Weinh); 2019 Aug; 6(16):1900299. PubMed ID: 31453060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles.
    Feng S; Song X; Liu Y; Lin X; Yan L; Liu S; Dong W; Yang X; Jiang Z; Ding Y
    Nat Commun; 2019 Nov; 10(1):5281. PubMed ID: 31754128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts.
    Jeong H; Shin S; Lee H
    ACS Nano; 2020 Nov; 14(11):14355-14374. PubMed ID: 33140947
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bimetallic Nanoparticles Associating Noble Metals and First-Row Transition Metals in Catalysis.
    Mustieles Marin I; Asensio JM; Chaudret B
    ACS Nano; 2021 Mar; 15(3):3550-3556. PubMed ID: 33660508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Supported Ultrafine Non-noble Subnanometer-Scale Metal Particles Derived from Metal-Organic Frameworks as Highly Efficient Heterogeneous Catalysts.
    Kang X; Liu H; Hou M; Sun X; Han H; Jiang T; Zhang Z; Han B
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1080-4. PubMed ID: 26617066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A repertoire of biomedical applications of noble metal nanoparticles.
    Azharuddin M; Zhu GH; Das D; Ozgur E; Uzun L; Turner APF; Patra HK
    Chem Commun (Camb); 2019 Jun; 55(49):6964-6996. PubMed ID: 31140997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.