These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30485085)

  • 1. Efficient Modeling of Optical Excitations of Colloidal Core-Shell Semiconductor Quantum Dots by Using Symmetrized Orbitals.
    Cheche TO; Chang YC
    J Phys Chem A; 2018 Dec; 122(51):9910-9921. PubMed ID: 30485085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast exciton dynamics in Type II ZnTe-ZnSe colloidal quantum dots.
    Cadirci M; Stubbs SK; Fairclough SM; Tyrrell EJ; Watt AA; Smith JM; Binks DJ
    Phys Chem Chem Phys; 2012 Oct; 14(39):13638-45. PubMed ID: 22964845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots.
    Jing L; Kershaw SV; Kipp T; Kalytchuk S; Ding K; Zeng J; Jiao M; Sun X; Mews A; Rogach AL; Gao M
    J Am Chem Soc; 2015 Feb; 137(5):2073-84. PubMed ID: 25594869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer mechanisms in semiconductor hybrids with colloidal core/shell quantum dots on ZnSe substrates.
    Wilhelm M; Kommadath SC; Heimbrodt W
    Nanotechnology; 2020 Dec; 31(50):505714. PubMed ID: 32927451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots.
    Song Y; Li Y; Liu Y; Su X; Ma Q
    Talanta; 2015 Nov; 144():680-5. PubMed ID: 26452877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degenerately n-Doped Colloidal PbSe Quantum Dots: Band Assignments and Electrostatic Effects.
    Araujo JJ; Brozek CK; Kroupa DM; Gamelin DR
    Nano Lett; 2018 Jun; 18(6):3893-3900. PubMed ID: 29763319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals.
    Fischer SA; Crotty AM; Kilina SV; Ivanov SA; Tretiak S
    Nanoscale; 2012 Feb; 4(3):904-14. PubMed ID: 22170563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling Charge Carrier Overlap in Type-II ZnSe/ZnS/CdS Core-Barrier-Shell Quantum Dots.
    Boldt K; Ramanan C; Chanaewa A; Werheid M; Eychmüller A
    J Phys Chem Lett; 2015 Jul; 6(13):2590-7. PubMed ID: 26266739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition-tunable optical properties of colloidal IV-VI quantum dots, composed of core/shell heterostructures with alloy components.
    Maikov GI; Vaxenburg R; Sashchiuk A; Lifshitz E
    ACS Nano; 2010 Nov; 4(11):6547-56. PubMed ID: 20945884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface control of electronic and optical properties in IV-VI and II-VI core/shell colloidal quantum dots: a review.
    Jang Y; Shapiro A; Isarov M; Rubin-Brusilovski A; Safran A; Budniak AK; Horani F; Dehnel J; Sashchiuk A; Lifshitz E
    Chem Commun (Camb); 2017 Jan; 53(6):1002-1024. PubMed ID: 27995231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the exciton binding energy in CdSe quantum dots.
    Meulenberg RW; Lee JR; Wolcott A; Zhang JZ; Terminello LJ; van Buuren T
    ACS Nano; 2009 Feb; 3(2):325-30. PubMed ID: 19236067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of symmetry breaking on the optical transitions in lead-salt quantum dots.
    Nootz G; Padilha LA; Olszak PD; Webster S; Hagan DJ; Van Stryland EW; Levina L; Sukhovatkin V; Brzozowski L; Sargent EH
    Nano Lett; 2010 Sep; 10(9):3577-82. PubMed ID: 20734976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.
    Elward JM; Chakraborty A
    J Chem Theory Comput; 2015 Feb; 11(2):462-71. PubMed ID: 26580906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.