These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30485404)

  • 1. Price of disorder in the lac repressor hinge helix.
    Seckfort D; Montgomery Pettitt B
    Biopolymers; 2019 Jan; 110(1):e23239. PubMed ID: 30485404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lac repressor hinge helix in context: The effect of the DNA binding domain and symmetry.
    Seckfort D; Lynch GC; Pettitt BM
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129538. PubMed ID: 31958546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator.
    Spronk CA; Bonvin AM; Radha PK; Melacini G; Boelens R; Kaptein R
    Structure; 1999 Dec; 7(12):1483-92. PubMed ID: 10647179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hinge-helix formation and DNA bending in various lac repressor-operator complexes.
    Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R
    EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactose repressor hinge domain independently binds DNA.
    Xu JS; Hewitt MN; Gulati JS; Cruz MA; Zhan H; Liu S; Matthews KS
    Protein Sci; 2018 Apr; 27(4):839-847. PubMed ID: 29318690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction.
    Sengupta R; Capp MW; Shkel IA; Record MT
    Nucleic Acids Res; 2017 Dec; 45(22):12671-12680. PubMed ID: 29036376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic switching by the Lac repressor is based on two-state Monod-Wyman-Changeux allostery.
    Romanuka J; Folkers GE; Gnida M; Kovačič L; Wienk H; Kaptein R; Boelens R
    Proc Natl Acad Sci U S A; 2023 Dec; 120(49):e2311240120. PubMed ID: 38019859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
    Lewis M; Chang G; Horton NC; Kercher MA; Pace HC; Schumacher MA; Brennan RG; Lu P
    Science; 1996 Mar; 271(5253):1247-54. PubMed ID: 8638105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of LacI binding in vivo.
    Du M; Kodner S; Bai L
    Nucleic Acids Res; 2019 Oct; 47(18):9609-9618. PubMed ID: 31396617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of simulated and experimentally determined dynamics for a variant of the Lacl DNA-binding domain, Nlac-P.
    Swint-Kruse L; Matthews KS; Smith PE; Pettitt BM
    Biophys J; 1998 Jan; 74(1):413-21. PubMed ID: 9449341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of protein and DNA structure revealed in simulations of the lac operon.
    Czapla L; Grosner MA; Swigon D; Olson WK
    PLoS One; 2013; 8(2):e56548. PubMed ID: 23457581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli.
    Fulcrand G; Dages S; Zhi X; Chapagain P; Gerstman BS; Dunlap D; Leng F
    Sci Rep; 2016 Jan; 6():19243. PubMed ID: 26763930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards evolving a better repressor.
    Daber R; Lewis M
    Protein Eng Des Sel; 2009 Nov; 22(11):673-83. PubMed ID: 19729374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis in the lacI gene target of E. coli: improved analysis for lacI(d) and lacO mutants.
    Swerdlow SJ; Schaaper RM
    Mutat Res; 2014 Dec; 770():79-84. PubMed ID: 25771873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone and side chain dynamics of lac repressor headpiece (1-56) and its complex with DNA.
    Slijper M; Boelens R; Davis AL; Konings RN; van der Marel GA; van Boom JH; Kaptein R
    Biochemistry; 1997 Jan; 36(1):249-54. PubMed ID: 8993340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.