These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30485635)

  • 1. Mechanical and biological evaluation of a hydroxyapatite-reinforced scaffold for bone regeneration.
    Patel PP; Buckley C; Taylor BL; Sahyoun CC; Patel SD; Mont AJ; Mai L; Patel S; Freeman JW
    J Biomed Mater Res A; 2019 Apr; 107(4):732-741. PubMed ID: 30485635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of mechanically compliant 3D composite scaffolds for bone tissue engineering applications.
    Anandan D; Mary Stella S; Arunai Nambiraj N; Vijayalakshmi U; Jaiswal AK
    J Biomed Mater Res A; 2018 Dec; 106(12):3267-3274. PubMed ID: 30289613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization.
    Klimek K; Przekora A; Pałka K; Ginalska G
    J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halloysite nanoclay reinforced hydroxyapatite porous scaffold for hard tissue regeneration.
    Yadav U; Verma V
    J Mech Behav Biomed Mater; 2023 Apr; 140():105626. PubMed ID: 36739825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of 3D bioprinted tri-polymer network scaffolds for bone tissue regeneration.
    Bendtsen ST; Wei M
    J Biomed Mater Res A; 2017 Dec; 105(12):3262-3272. PubMed ID: 28804996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical CO
    Ruphuy G; Souto-Lopes M; Paiva D; Costa P; Rodrigues AE; Monteiro FJ; Salgado CL; Fernandes MH; Lopes JC; Dias MM; Barreiro MF
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):965-975. PubMed ID: 28470936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds.
    Yu J; Xia H; Teramoto A; Ni QQ
    J Biomed Mater Res A; 2018 Jan; 106(1):244-254. PubMed ID: 28880433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4.
    Ou L; Lan Y; Feng Z; Feng L; Yang J; Liu Y; Bian L; Tan J; Lai R; Guo R
    Theranostics; 2019; 9(15):4525-4541. PubMed ID: 31285777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
    Ferreira JR; Padilla R; Urkasemsin G; Yoon K; Goeckner K; Hu WS; Ko CC
    Tissue Eng Part A; 2013 Aug; 19(15-16):1803-16. PubMed ID: 23495972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications.
    Ingole VH; Hany Hussein K; Kashale AA; Ghule K; Vuherer T; Kokol V; Chang JY; Ling YC; Vinchurkar A; Dhakal HN; Ghule AV
    J Biomed Mater Res A; 2017 Nov; 105(11):2935-2947. PubMed ID: 28639437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering.
    Du J; Gan S; Bian Q; Fu D; Wei Y; Wang K; Lin Q; Chen W; Huang D
    J Biomater Appl; 2018 Sep; 33(3):402-409. PubMed ID: 30223737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.