These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30485635)
21. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering. Cardoso GB; Maniglio D; Volpato FZ; Tondon A; Migliaresi C; Kaunas RR; Zavaglia CA J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1076-82. PubMed ID: 26033969 [TBL] [Abstract][Full Text] [Related]
22. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
23. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Ryu JH; Kang TY; Shin H; Kim KM; Hong MH; Kwon JS Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198074 [TBL] [Abstract][Full Text] [Related]
24. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032 [TBL] [Abstract][Full Text] [Related]
25. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique. Cho YS; Hong MW; Jeong HJ; Lee SJ; Kim YY; Cho YS J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2315-2325. PubMed ID: 27504613 [TBL] [Abstract][Full Text] [Related]
26. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration. Castilla Bolaños MA; Buttigieg J; Briceño Triana JC Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():519-525. PubMed ID: 28024616 [TBL] [Abstract][Full Text] [Related]
27. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
28. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
29. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
30. In vitro biomimetic construction of hydroxyapatite-porcine acellular dermal matrix composite scaffold for MC3T3-E1 preosteoblast culture. Zhao H; Wang G; Hu S; Cui J; Ren N; Liu D; Liu H; Cao C; Wang J; Wang Z Tissue Eng Part A; 2011 Mar; 17(5-6):765-76. PubMed ID: 20964580 [TBL] [Abstract][Full Text] [Related]
31. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
32. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
34. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Kook YJ; Tian J; Jeon YS; Choi MJ; Song JE; Park CH; Reis RL; Khang G J Biomater Sci Polym Ed; 2018; 29(7-9):984-996. PubMed ID: 29207926 [TBL] [Abstract][Full Text] [Related]
35. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
36. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. Panda N; Bissoyi A; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157 [TBL] [Abstract][Full Text] [Related]
37. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
38. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Ran J; Hu J; Sun G; Chen S; Jiang P; Shen X; Tong H Int J Biol Macromol; 2016 Dec; 93(Pt A):87-97. PubMed ID: 27568361 [TBL] [Abstract][Full Text] [Related]
39. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Milovac D; Gamboa-Martínez TC; Ivankovic M; Gallego Ferrer G; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():264-72. PubMed ID: 25063118 [TBL] [Abstract][Full Text] [Related]
40. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]