BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30485652)

  • 1. Influence of PDLA nanoparticles size on drug release and interaction with cells.
    Cartaxo AL; Costa-Pinto AR; Martins A; Faria S; Gonçalves VMF; Tiritan ME; Ferreira H; Neves NM
    J Biomed Mater Res A; 2019 Mar; 107(3):482-493. PubMed ID: 30485652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.
    Li Z; Yuan D; Jin G; Tan BH; He C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate-decorated arginine-based poly(ester urea urethane) nanoparticles as carriers for gambogic acid and effect on cancer cells.
    He M; Ro L; Liu J; Chu CC
    J Biomed Mater Res A; 2017 Feb; 105(2):475-490. PubMed ID: 27706899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy.
    Alemrayat B; Elhissi A; Younes HM
    Pharm Dev Technol; 2019 Feb; 24(2):235-242. PubMed ID: 29561210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zapped assembly of polymeric (ZAP) nanoparticles for anti-cancer drug delivery.
    Dunn SS; Luft JC; Parrott MC
    Nanoscale; 2019 Jan; 11(4):1847-1855. PubMed ID: 30637420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol.
    Guan Q; Sun S; Li X; Lv S; Xu T; Sun J; Feng W; Zhang L; Li Y
    J Mater Sci Mater Med; 2016 Feb; 27(2):24. PubMed ID: 26704541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery.
    Wang J; Liu W; Tu Q; Wang J; Song N; Zhang Y; Nie N; Wang J
    Biomacromolecules; 2011 Jan; 12(1):228-34. PubMed ID: 21158381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Amphiphilic Poly-
    Berdiaki A; Perisynaki E; Stratidakis A; Kulikov PP; Kuskov AN; Stivaktakis P; Henrich-Noack P; Luss AL; Shtilman MM; Tzanakakis GN; Tsatsakis A; Nikitovic D
    Mol Pharm; 2020 Nov; 17(11):4212-4225. PubMed ID: 32986447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides.
    Nunes R; Araújo F; Barreiros L; Bártolo I; Segundo MA; Taveira N; Sarmento B; das Neves J
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34942-34953. PubMed ID: 30234288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.
    Li Z; Huang H; Huang L; Du L; Sun Y; Duan Y
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28406431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma.
    Liu XJ; Li L; Liu XJ; Li Y; Zhao CY; Wang RQ; Zhen YS
    Int J Nanomedicine; 2017; 12():5255-5269. PubMed ID: 28769562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery.
    Łukasiewicz S; Szczepanowicz K; Błasiak E; Dziedzicka-Wasylewska M
    Langmuir; 2015 Jun; 31(23):6415-25. PubMed ID: 26013473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel.
    Liang Y; Xiao L; Li Y; Zhai Y; Xie C; Deng L; Dong A
    J Biomater Sci Polym Ed; 2011; 22(4-6):701-15. PubMed ID: 20566053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Di-Block PLCL and Tri-Block PLCLG Matrix Polymeric Nanoparticles Enhanced the Anticancer Activity of Loaded 5-Fluorouracil.
    Ashour AE; Badran MM; Kumar A; Rishi AK; Yassin AE
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):739-747. PubMed ID: 28029617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
    Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of mPEG-PCL and mPEG-PLGA on encapsulation efficiency and drug-loading of SN-38 NPs.
    Gan M; Zhang W; Wei S; Dang H
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):389-397. PubMed ID: 27043776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly (d, l) lactide nanoparticles.
    Patel PJ; Gohel MC; Acharya SR
    Pharm Dev Technol; 2014 Mar; 19(2):200-12. PubMed ID: 23432525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution.
    Liu H; Chen S; Zhou Y; Che X; Bao Z; Li S; Xu J
    J Drug Target; 2013 Nov; 21(9):846-54. PubMed ID: 23944216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.