These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30485666)

  • 1. Whole-cell biocatalysis platform for gram-scale oxidative dearomatization of phenols.
    Baker Dockrey SA; Doyon TJ; Perkins JC; Narayan ARH
    Chem Biol Drug Des; 2019 Jun; 93(6):1207-1213. PubMed ID: 30485666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic site- and enantioselective oxidative dearomatization of phenols.
    Baker Dockrey SA; Lukowski AL; Becker MR; Narayan ARH
    Nat Chem; 2018 Feb; 10(2):119-125. PubMed ID: 29359749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction.
    Chiang CH; Wymore T; Rodríguez Benítez A; Hussain A; Smith JL; Brooks CL; Narayan ARH
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2218248120. PubMed ID: 37014851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton.
    Lin Z; Xue Y; Liang XW; Wang J; Lin S; Tao J; You SL; Liu W
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8401-8405. PubMed ID: 33496012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H
    Al-Shameri A; Willot SJ; Paul CE; Hollmann F; Lauterbach L
    Chem Commun (Camb); 2020 Aug; 56(67):9667-9670. PubMed ID: 32696786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for selectivity in flavin-dependent monooxygenase-catalyzed oxidative dearomatization.
    Benítez AR; Tweedy S; Baker Dockrey SA; Lukowski AL; Wymore T; Khare D; Brooks CL; Palfey BA; Smith JL; Narayan ARH
    ACS Catal; 2019 Apr; 9(4):3633-3640. PubMed ID: 31346489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enigmatic reaction of flavins with oxygen.
    Chaiyen P; Fraaije MW; Mattevi A
    Trends Biochem Sci; 2012 Sep; 37(9):373-80. PubMed ID: 22819837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic hydroxylases.
    Chenprakhon P; Pimviriyakul P; Tongsook C; Chaiyen P
    Enzymes; 2020; 47():283-326. PubMed ID: 32951826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Selective Demethylation of Aryl Methyl Ethers with a Pseudomonas Rieske Monooxygenase.
    Lanfranchi E; Trajković M; Barta K; de Vries JG; Janssen DB
    Chembiochem; 2019 Jan; 20(1):118-125. PubMed ID: 30362644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase.
    Rioz-Martínez A; Kopacz M; de Gonzalo G; Torres Pazmiño DE; Gotor V; Fraaije MW
    Org Biomol Chem; 2011 Mar; 9(5):1337-41. PubMed ID: 21225061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst.
    Nguyen QT; de Gonzalo G; Binda C; Rioz-Martínez A; Mattevi A; Fraaije MW
    Chembiochem; 2016 Jul; 17(14):1359-66. PubMed ID: 27123962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C3 and C6 Modification-Specific OYE Biotransformations of Synthetic Carvones and Sequential BVMO Chemoenzymatic Synthesis of Chiral Caprolactones.
    Issa IS; Toogood HS; Johannissen LO; Raftery J; Scrutton NS; Gardiner JM
    Chemistry; 2019 Feb; 25(12):2983-2988. PubMed ID: 30468546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols.
    Herrmann S; Dippe M; Pecher P; Funke E; Pietzsch M; Wessjohann LA
    Chembiochem; 2022 Mar; 23(6):e202100480. PubMed ID: 34979058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoenzymatic Total Synthesis of Natural Products.
    Chakrabarty S; Romero EO; Pyser JB; Yazarians JA; Narayan ARH
    Acc Chem Res; 2021 Mar; 54(6):1374-1384. PubMed ID: 33600149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating Cofactor Balance In Vivo with a Synthetic Flavin Analogue.
    Tan Z; Zhu C; Fu J; Zhang X; Li M; Zhuang W; Ying H
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16464-16468. PubMed ID: 30341805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.