These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 30485718)
1. Enhanced Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair. Yan Y; Cheng B; Chen K; Cui W; Qi J; Li X; Deng L Adv Healthc Mater; 2019 Feb; 8(3):e1801043. PubMed ID: 30485718 [TBL] [Abstract][Full Text] [Related]
2. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering. Cheng B; Yan Y; Qi J; Deng L; Shao ZW; Zhang KQ; Li B; Sun Z; Li X ACS Appl Mater Interfaces; 2018 Apr; 10(15):12474-12484. PubMed ID: 29584396 [TBL] [Abstract][Full Text] [Related]
3. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Wu J; Zheng K; Huang X; Liu J; Liu H; Boccaccini AR; Wan Y; Guo X; Shao Z Acta Biomater; 2019 Jun; 91():60-71. PubMed ID: 30986530 [TBL] [Abstract][Full Text] [Related]
4. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166 [TBL] [Abstract][Full Text] [Related]
5. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Nguyen MK; Jeon O; Dang PN; Huynh CT; Varghai D; Riazi H; McMillan A; Herberg S; Alsberg E Acta Biomater; 2018 Jul; 75():105-114. PubMed ID: 29885529 [TBL] [Abstract][Full Text] [Related]
6. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748 [TBL] [Abstract][Full Text] [Related]
7. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote skin wound repair in rats. Cui B; Zhang C; Gan B; Liu W; Liang J; Fan Z; Wen Y; Yang Y; Peng X; Zhou Y Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110611. PubMed ID: 32228999 [TBL] [Abstract][Full Text] [Related]
8. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Li DW; He J; He FL; Liu YL; Liu YY; Ye YJ; Deng X; Yin DC J Biomater Appl; 2018 Apr; 32(9):1164-1173. PubMed ID: 29471713 [TBL] [Abstract][Full Text] [Related]
9. Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Zhang Y; Chen H; Zhang T; Zan Y; Ni T; Cao Y; Wang J; Liu M; Pei R Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():841-849. PubMed ID: 30606598 [TBL] [Abstract][Full Text] [Related]
10. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306 [TBL] [Abstract][Full Text] [Related]
11. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair. Wang B; Yuan S; Xin W; Chen Y; Fu Q; Li L; Jiao Y Int J Biol Macromol; 2021 Dec; 192():407-416. PubMed ID: 34597700 [TBL] [Abstract][Full Text] [Related]
12. Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells. Ribeiro M; Fernandes MH; Beppu MM; Monteiro FJ; Ferraz MP Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():336-345. PubMed ID: 29752106 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
14. Calcium phosphate incorporated in silk fibroin/methylcellulose based injectable hydrogel: Preparation, characterization, and in vitro biological evaluation for bone defect treatment. Phewchan P; Laoruengthana A; Tiyaboonchai W J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1640-1652. PubMed ID: 37194686 [TBL] [Abstract][Full Text] [Related]
15. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
16. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Carthew J; Donderwinkel I; Shrestha S; Truong VX; Forsythe JS; Frith JE Acta Biomater; 2020 Jan; 101():249-261. PubMed ID: 31722255 [TBL] [Abstract][Full Text] [Related]
17. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Luetchford KA; Chaudhuri JB; De Bank PA Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110116. PubMed ID: 31753329 [TBL] [Abstract][Full Text] [Related]
18. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462 [TBL] [Abstract][Full Text] [Related]
19. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Sheng R; Chen J; Wang H; Luo Y; Liu J; Chen Z; Mo Q; Chi J; Ling C; Tan X; Yao Q; Zhang W Adv Healthc Mater; 2022 Sep; 11(17):e2200602. PubMed ID: 35749970 [TBL] [Abstract][Full Text] [Related]
20. Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrow-derived mesenchymal stem cells on demineralized bone particle scaffold. Kim JW; Park JH; Muthukumar T; Shin EY; Shin ME; Song JE; Khang G J Tissue Eng Regen Med; 2020 Apr; 14(4):563-574. PubMed ID: 32061025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]