These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30485732)

  • 21. Hand-in-hand advances in biomedical engineering and sensorimotor restoration.
    Pisotta I; Perruchoud D; Ionta S
    J Neurosci Methods; 2015 May; 246():22-9. PubMed ID: 25769276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study.
    Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J
    Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Editorial: Embodiment and Co-adaptation Through Human-Machine Interfaces: At the Border of Robotics, Neuroscience and Psychology.
    Beckerle P; Castellini C; Lenggenhager B; Dosen S
    Front Neurorobot; 2022; 16():871785. PubMed ID: 35401141
    [No Abstract]   [Full Text] [Related]  

  • 24. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.
    Panarese A; Edin BB; Vecchi F; Carrozza MC; Johansson RS
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):560-7. PubMed ID: 19457753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-machine interfaces for space applications-research, technological development, and opportunities.
    Summerer L; Izzo D; Rossini L
    Int Rev Neurobiol; 2009; 86():213-23. PubMed ID: 19608002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.
    Sengül A; van Elk M; Rognini G; Aspell JE; Bleuler H; Blanke O
    PLoS One; 2012; 7(12):e49473. PubMed ID: 23227142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm.
    Ison M; Vujaklija I; Whitsell B; Farina D; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):424-33. PubMed ID: 25838524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Involving interface": an extended mind theoretical approach to roboethics.
    Anderson M; Ishiguro H; Fukushi T
    Account Res; 2010 Nov; 17(6):316-29. PubMed ID: 21069594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cognition from the bottom up: on biological inspiration, body morphology, and soft materials.
    Pfeifer R; Iida F; Lungarella M
    Trends Cogn Sci; 2014 Aug; 18(8):404-13. PubMed ID: 24839893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptics in Robot-Assisted Surgery: Challenges and Benefits.
    Enayati N; De Momi E; Ferrigno G
    IEEE Rev Biomed Eng; 2016; 9():49-65. PubMed ID: 26960228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethica ex machina: issues in roboethics.
    Mushiaki S
    J Int Bioethique; 2013 Dec; 24(4):17-26, 176-7. PubMed ID: 24558732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Artificial humans": Psychology and neuroscience perspectives on embodiment and nonverbal communication.
    Vogeley K; Bente G
    Neural Netw; 2010; 23(8-9):1077-90. PubMed ID: 20620019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical control of a prosthetic arm for self-feeding.
    Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB
    Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How Cognitive Models of Human Body Experience Might Push Robotics.
    Schürmann T; Mohler BJ; Peters J; Beckerle P
    Front Neurorobot; 2019; 13():14. PubMed ID: 31031614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robots and therapeutic play: evaluation of a wireless interface device for interaction with a robot playmate.
    Roberts L; Park HW; Howard AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6475-8. PubMed ID: 23367412
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.