These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30485732)

  • 41. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.
    Oppold P; Rupp M; Mouloua M; Hancock PA; Martin J
    Work; 2012; 41 Suppl 1():5609-11. PubMed ID: 22317628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A lightweight, inexpensive robotic system for insect vision.
    Sabo C; Chisholm R; Petterson A; Cope A
    Arthropod Struct Dev; 2017 Sep; 46(5):689-702. PubMed ID: 28818663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the role of emotion in biological and robotic autonomy.
    Ziemke T
    Biosystems; 2008 Feb; 91(2):401-8. PubMed ID: 17714857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bidirectional interfaces with the peripheral nervous system.
    Micera S; Navarro X
    Int Rev Neurobiol; 2009; 86():23-38. PubMed ID: 19607988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In touch with robotics: neurosurgery for the future.
    Nathoo N; Cavuşoğlu MC; Vogelbaum MA; Barnett GH
    Neurosurgery; 2005 Mar; 56(3):421-33; discussion 421-33. PubMed ID: 15730567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain-machine interfaces for space applications.
    Rossini L; Izzo D; Summerer L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():520-3. PubMed ID: 19964224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prosthetic devices: challenges and implications of robotic implants and biological interfaces.
    Lai JC; Schoen MP; Perez Gracia A; Naidu DS; Leung SW
    Proc Inst Mech Eng H; 2007 Feb; 221(2):173-83. PubMed ID: 17385571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities.
    Jafari N; Adams KD; Tavakoli M
    J Rehabil Assist Technol Eng; 2016; 3():2055668316668147. PubMed ID: 31186908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-Term Home-Use of Sensory-Motor-Integrated Bidirectional Bionic Prosthetic Arms Promotes Functional, Perceptual, and Cognitive Changes.
    Schofield JS; Shell CE; Beckler DT; Thumser ZC; Marasco PD
    Front Neurosci; 2020; 14():120. PubMed ID: 32140096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mind Meets Machine: Towards a Cognitive Science of Human-Machine Interactions.
    Cross ES; Ramsey R
    Trends Cogn Sci; 2021 Mar; 25(3):200-212. PubMed ID: 33384213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human-in-the-Loop Optimization of Wearable Robotic Devices to Improve Human-Robot Interaction: A Systematic Review.
    Diaz MA; Vos M; Dillen A; Tassignon B; Flynn L; Geeroms J; Meeusen R; Verstraten T; Babic J; Beckerle P; De Pauw K
    IEEE Trans Cybern; 2023 Dec; 53(12):7483-7496. PubMed ID: 37015459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robotic hand augmentation drives changes in neural body representation.
    Kieliba P; Clode D; Maimon-Mor RO; Makin TR
    Sci Robot; 2021 May; 6(54):. PubMed ID: 34043536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding haptics by evolving mechatronic systems.
    Loeb GE; Tsianos GA; Fishel JA; Wettels N; Schaal S
    Prog Brain Res; 2011; 192():129-44. PubMed ID: 21763523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward Enhanced Teleoperation Through Embodiment.
    Toet A; Kuling IA; Krom BN; van Erp JBF
    Front Robot AI; 2020; 7():14. PubMed ID: 33501183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. iCub3 avatar system: Enabling remote fully immersive embodiment of humanoid robots.
    Dafarra S; Pattacini U; Romualdi G; Rapetti L; Grieco R; Darvish K; Milani G; Valli E; Sorrentino I; Viceconte PM; Scalzo A; Traversaro S; Sartore C; Elobaid M; Guedelha N; Herron C; Leonessa A; Draicchio F; Metta G; Maggiali M; Pucci D
    Sci Robot; 2024 Jan; 9(86):eadh3834. PubMed ID: 38266102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embedded human control of robots using myoelectric interfaces.
    Antuvan CW; Ison M; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):820-7. PubMed ID: 24760930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experiments on the development and use of a new generation of intra-neural electrodes to control robotic devices.
    Micera S; Sergi PN; Carpaneto J; Citi L; Bossi S; Koch KP; Hoffmann KP; Menciassi A; Yoshida K; Dario P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2940-3. PubMed ID: 17945747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Man-machine interfaces in computer assisted surgery.
    Visarius H; Gong J; Scheer C; Haralamb S; Nolte LP
    Comput Aided Surg; 1997; 2(2):102-7. PubMed ID: 9292262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators.
    Ogenyi UE; Liu J; Yang C; Ju Z; Liu H
    IEEE Trans Cybern; 2021 Apr; 51(4):1888-1901. PubMed ID: 31751257
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance Evaluation of Passive Haptic Feedback for Tactile HMI Design in CAVEs.
    Lassagne A; Kemeny A; Posselt J; Merienne F
    IEEE Trans Haptics; 2018; 11(1):119-127. PubMed ID: 28952949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.