These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30486248)

  • 1. On the Influence of Infra-Red Sensor in the Accurate Estimation of Grinding Temperatures.
    Urgoiti L; Barrenetxea D; Sánchez JA; Pombo I; Álvarez J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Numerical Investigations in Shallow Cut Grinding by Workpiece Integrated Infrared Thermopile Array.
    Reimers M; Lang W; Dumstorff G
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28973978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.
    Arriandiaga A; Portillo E; Sánchez JA; Cabanes I; Pombo I
    Sensors (Basel); 2014 May; 14(5):8756-78. PubMed ID: 24854055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.
    Paknejad M; Abdullah A; Azarhoushang B
    Ultrason Sonochem; 2017 Nov; 39():392-402. PubMed ID: 28732961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations.
    Ullah AS; Caggiano A; Kubo A; Chowdhury MAK
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding.
    Nápoles Alberro A; González Rojas HA; Sánchez Egea AJ; Hameed S; Peña Aguilar RM
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30901840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traceability of On-Machine Tool Measurement: A Review.
    Mutilba U; Gomez-Acedo E; Kortaberria G; Olarra A; Yagüe-Fabra JA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28696358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature effect on surface topography and uniform scallop height control in normal grinding of optical curved surface considering wheel vibration.
    Chen S; Yang S; Liao Z; Cheung CF; Jiang Z; Zhang F
    Opt Express; 2021 Mar; 29(6):8041-8063. PubMed ID: 33820258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing.
    Liu CS; Ou YJ
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32708041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of effective engineering methods for controlling handheld workpiece vibration in grinding processes.
    Dong RG; Welcome DE; Xu XS; McDowell TW
    Int J Ind Ergon; 2020 May; 77():. PubMed ID: 34552302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature Measurement and Numerical Prediction in Machining Inconel 718.
    Díaz-Álvarez J; Tapetado A; Vázquez C; Miguélez H
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grinding Temperature and Surface Integrity of Quenched Automotive Transmission Gear during the Form Grinding Process.
    Jiang X; Liu K; Yan Y; Li M; Gong P; He H
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Effect of Process Parameters on Bone Grinding Performance Based on On-Line Measurement of Temperature and Force Sensors.
    Zhang L; Zou L; Wen D; Wang X; Kong F; Piao Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of Surface Waviness Error of Fresnel Micro-Structured Mold by Using Non-Integer Rotation Speed Ratio in Parallel Grinding Process.
    Pan Y; Zhao Q; Guo B; Chen B; Wang J
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32629941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on contact performance of ultrasonic-assisted grinding surface.
    Wen Y; Tang J; Zhou W; Zhu C
    Ultrasonics; 2019 Jan; 91():193-200. PubMed ID: 30122438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Experimental Evaluation of a 3D Vision System for Grinding Robot.
    Diao S; Chen X; Luo J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of high temperatures on a fiber-optic probe for temperature measurement.
    Milcent E; Olalde G; Robert JF; Hernandez D; Clement M
    Appl Opt; 1994 Sep; 33(25):5882-7. PubMed ID: 20935992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the amount of dental material removed by selective grinding in wax dentures with photogrammetric measurements.
    Ravasini F; Fornari M; Bonanini M
    Minerva Stomatol; 2016 Dec; 65(6):335-342. PubMed ID: 27711027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Efficiency of Hot Nano-Grinding of Mono-Crystalline Fcc Metals Using Molecular Dynamics Method.
    Karkalos NE; Markopoulos AP
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Thermal Sensation Based on Wrist Skin Temperatures.
    Sim SY; Koh MJ; Joo KM; Noh S; Park S; Kim YH; Park KS
    Sensors (Basel); 2016 Mar; 16(4):420. PubMed ID: 27023538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.