These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30486302)

  • 1. Magnetic Properties of Ferromagnetic Particles under Alternating Magnetic Fields: Focus on Particle Detection Sensor Applications.
    Jia R; Ma B; Zheng C; Wang L; Ba X; Du Q; Wang K
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Improvement of the Sensitivity and Detectability of a Large-Aperture Electromagnetic Wear Particle Detector.
    Jia R; Ma B; Zheng C; Ba X; Wang L; Du Q; Wang K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and Optimization Design of Inductive Wear Particle Sensor.
    Fan B; Wang L; Liu Y; Zhang P; Feng S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on the Influence of Coil LC Parallel Resonance on Detection Effect of Inductive Wear Debris Sensor.
    Huang H; He S; Xie X; Feng W; Zhen H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Detection Ability of Inductive Micro-Sensor for Non-Ferromagnetic Wear Debris.
    Wang M; Shi H; Zhang H; Huo D; Xie Y; Su J
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-Three-Coil Sensor with Dual Excitation Signals Use Asymmetric Magnetic Fields to Distinguish between Non-Ferrous Metals.
    Hong J; Xie Y; Zhang S; Shi H; Liu Y; Zhang H; Sun Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Permanent Magnet Ferromagnetic Wear Debris Sensor Based on Axisymmetric High-Gradient Magnetic Field.
    Fan B; Liu Y; Zhang P; Wang L; Zhang C; Wang J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge.
    Zhang S; Xie Y; Zhang L; Zhang Y; Zhang S; Bai C; Li W
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the Effect of Velocity on the Eddy Current Effect of Metal Particles of Different Materials in Inductive Bridges.
    Li W; Yu S; Zhang H; Zhang X; Bai C; Shi H; Xie Y; Wang C; Xu Z; Zeng L; Sun Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Microstructure and Properties of Ni60A/WC Composite Coating by Alternating-Magnetic-Field-Assisted Laser Cladding.
    Zhu Y; Zhou H; Chen Z; Wang Z; He F; Xu C
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Online Digital Imaging Excitation Sensor for Wind Turbine Gearbox Wear Condition Monitoring Based on Adaptive Deep Learning Method.
    Tao H; Zhong Y; Yang G; Feng W
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable magnetophoretic method for distinguishing and separating wear debris particles in an Fe-PDMS-based microfluidic chip.
    Zhao K; Wei Y; Zhao P; Kong D; Gao T; Pan X; Wang J
    Electrophoresis; 2023 Aug; 44(15-16):1210-1219. PubMed ID: 37075199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inductive Magnetic Nanoparticle Sensor based on Microfluidic Chip Oil Detection Technology.
    Bai C; Zhang H; Zeng L; Zhao X; Ma L
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32050692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Sensitivity of a Micro Inductive Sensor for Wear Debris Detection with Magnetic Powder Surrounded.
    Liu L; Chen L; Wang S; Yin Y; Liu D; Wu S; Liu Z; Pan X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31266180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance.
    Wang C; Bai C; Yang Z; Zhang H; Li W; Wang X; Zheng Y; Ilerioluwa L; Sun Y
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Method for assessment of distribution of UHMWPE wear particles in periprosthetic tissues in total hip arthroplasty].
    Pokorný D; Slouf M; Horák Z; Jahoda D; Entlicher G; Eklová S; Sosna A
    Acta Chir Orthop Traumatol Cech; 2006 Aug; 73(4):243-50. PubMed ID: 17026883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Method for Detecting Ferromagnetic Wear Debris with High Flow Velocity.
    Wang F; Liu Z; Ren X; Wu S; Meng M; Wang Y; Pan X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of two attractive ferromagnetic ellipsoidal particles by hydrodynamic interactions under alternating magnetic field.
    Abbas M; Bossis G
    Phys Rev E; 2017 Jun; 95(6-1):062611. PubMed ID: 28709332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.
    Li C; Peng J; Liang M
    Sensors (Basel); 2014 Mar; 14(4):6207-28. PubMed ID: 24686730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors.
    Zeng L; Zhang H; Wang Q; Zhang X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.