BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30486313)

  • 21. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA.
    Woerner AC; Frottin F; Hornburg D; Feng LR; Meissner F; Patra M; Tatzelt J; Mann M; Winklhofer KF; Hartl FU; Hipp MS
    Science; 2016 Jan; 351(6269):173-6. PubMed ID: 26634439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
    Mackenzie IR; Rademakers R; Neumann M
    Lancet Neurol; 2010 Oct; 9(10):995-1007. PubMed ID: 20864052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TAR DNA binding protein-43 and fused in sarcoma/translocated in liposarcoma protein in two neurodegenerative diseases.
    Wang XN; Cui LY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2012 Jun; 34(3):286-92. PubMed ID: 22776664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TDP-43 and FUS: a nuclear affair.
    Dormann D; Haass C
    Trends Neurosci; 2011 Jul; 34(7):339-48. PubMed ID: 21700347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences.
    Neumann M
    Rev Neurol (Paris); 2013 Oct; 169(10):793-8. PubMed ID: 24011641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin.
    Tang BL
    Cells; 2018 Jun; 7(6):. PubMed ID: 29904030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other?
    Baloh RH
    Curr Opin Neurol; 2012 Dec; 25(6):701-7. PubMed ID: 23041957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma.
    Bentmann E; Haass C; Dormann D
    FEBS J; 2013 Sep; 280(18):4348-70. PubMed ID: 23587065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors.
    Girdhar A; Guo L
    Biology (Basel); 2022 Jul; 11(7):. PubMed ID: 36101390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration.
    Lu B; Palacino J
    FASEB J; 2013 May; 27(5):1820-9. PubMed ID: 23325320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering enhanced protein disaggregases for neurodegenerative disease.
    Jackrel ME; Shorter J
    Prion; 2015; 9(2):90-109. PubMed ID: 25738979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Huntingtin affinity for partners is not changed by polyglutamine length: aggregation itself triggers aberrant interactions.
    Davranche A; Aviolat H; Zeder-Lutz G; Busso D; Altschuh D; Trottier Y; Klein FA
    Hum Mol Genet; 2011 Jul; 20(14):2795-806. PubMed ID: 21518730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Quantitative Heterokaryon Assay to Measure the Nucleocytoplasmic Shuttling of Proteins.
    McNicoll F; Müller-McNicoll M
    Bio Protoc; 2018 Sep; 8(17):e2472. PubMed ID: 34395784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons.
    Lange J; Wood-Kaczmar A; Ali A; Farag S; Ghosh R; Parker J; Casey C; Uno Y; Kunugi A; Ferretti P; Andre R; Tabrizi SJ
    Front Cell Neurosci; 2021; 15():742763. PubMed ID: 34658796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease.
    Lee WC; Yoshihara M; Littleton JT
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3224-9. PubMed ID: 14978262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure.
    Ding X; Ma M; Teng J; Teng RK; Zhou S; Yin J; Fonkem E; Huang JH; Wu E; Wang X
    Oncotarget; 2015 Sep; 6(27):24178-91. PubMed ID: 26172304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal RNA-binding protein dysfunction in multiple sclerosis cortex.
    Salapa HE; Hutchinson C; Popescu BF; Levin MC
    Ann Clin Transl Neurol; 2020 Jul; 7(7):1214-1224. PubMed ID: 32608162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autophagy and apoptosis dysfunction in neurodegenerative disorders.
    Ghavami S; Shojaei S; Yeganeh B; Ande SR; Jangamreddy JR; Mehrpour M; Christoffersson J; Chaabane W; Moghadam AR; Kashani HH; Hashemi M; Owji AA; Łos MJ
    Prog Neurobiol; 2014 Jan; 112():24-49. PubMed ID: 24211851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-binding protein altered expression and mislocalization in MS.
    Masaki K; Sonobe Y; Ghadge G; Pytel P; Lépine P; Pernin F; Cui QL; Antel JP; Zandee S; Prat A; Roos RP
    Neurol Neuroimmunol Neuroinflamm; 2020 May; 7(3):. PubMed ID: 32217641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Karyopherin abnormalities in neurodegenerative proteinopathies.
    Pasha T; Zatorska A; Sharipov D; Rogelj B; Hortobágyi T; Hirth F
    Brain; 2021 Nov; 144(10):2915-2932. PubMed ID: 34019093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.