These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30486351)

  • 1. Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants.
    Bashir T; Chandra Mishra R; Hasan MM; Mohanta TK; Bae H
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30486351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa.
    Zou J; Fu D; Gong H; Qian W; Xia W; Pires JC; Li R; Long Y; Mason AS; Yang TJ; Lim YP; Park BS; Meng J
    Plant J; 2011 Oct; 68(2):212-24. PubMed ID: 21689170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates.
    Federico C; Pappalardo AM; Ferrito V; Tosi S; Saccone S
    Chromosome Res; 2017 Oct; 25(3-4):261-276. PubMed ID: 28717965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genomic view of introgression and hybrid speciation.
    Baack EJ; Rieseberg LH
    Curr Opin Genet Dev; 2007 Dec; 17(6):513-8. PubMed ID: 17933508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Chromosomal behaviors in plant wide hybridizations and their genetic and evolutionary implications].
    Li ZY; Hua YW; Ge XH; Xu CY
    Yi Chuan; 2005 Mar; 27(2):315-24. PubMed ID: 15843365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes.
    Raskina O; Barber JC; Nevo E; Belyayev A
    Cytogenet Genome Res; 2008; 120(3-4):351-7. PubMed ID: 18504364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution.
    Birchler JA; Han F
    Plant Cell; 2018 Apr; 30(4):771-779. PubMed ID: 29545470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids.
    Chen ZJ; Ni Z
    Bioessays; 2006 Mar; 28(3):240-52. PubMed ID: 16479580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids.
    Xie S; Khan N; Ramanna MS; Niu L; Marasek-Ciolakowska A; Arens P; van Tuyl JM
    Genome; 2010 Jun; 53(6):439-46. PubMed ID: 20555433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards development of new ornamental plants: status and progress in wide hybridization.
    Kuligowska K; Lütken H; Müller R
    Planta; 2016 Jul; 244(1):1-17. PubMed ID: 26969022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of meiotic recombination frequency in plant genomes.
    Henderson IR
    Curr Opin Plant Biol; 2012 Nov; 15(5):556-61. PubMed ID: 23017241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant centromere organization: a dynamic structure with conserved functions.
    Ma J; Wing RA; Bennetzen JL; Jackson SA
    Trends Genet; 2007 Mar; 23(3):134-9. PubMed ID: 17275131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species.
    Bento M; Tomás D; Viegas W; Silva M
    Cytogenet Genome Res; 2013; 140(2-4):286-94. PubMed ID: 23899810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.
    Hirano T; Kazama Y; Ishii K; Ohbu S; Shirakawa Y; Abe T
    Plant J; 2015 Apr; 82(1):93-104. PubMed ID: 25690092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species.
    Lai Z; Nakazato T; Salmaso M; Burke JM; Tang S; Knapp SJ; Rieseberg LH
    Genetics; 2005 Sep; 171(1):291-303. PubMed ID: 16183908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure.
    Wang Y; Zhao Q; Qin X; Yang S; Li Z; Li J; Lou Q; Chen J
    Chromosoma; 2017 Dec; 126(6):713-728. PubMed ID: 28688040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization.
    Nicolas SD; Monod H; Eber F; Chèvre AM; Jenczewski E
    Plant J; 2012 May; 70(4):691-703. PubMed ID: 22268419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans.
    Rogers RL
    Mol Biol Evol; 2015 Dec; 32(12):3064-78. PubMed ID: 26399483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GISH technology in plant genome research.
    Raina SN; Rani V
    Methods Cell Sci; 2001; 23(1-3):83-104. PubMed ID: 11741146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.