These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30486473)
1. Use of Cellulose Nanofibers as an Electrode Binder for Lithium Ion Battery Screen Printing on a Paper Separator. El Baradai O; Beneventi D; Alloin F; Bultel Y; Chaussy D Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30486473 [TBL] [Abstract][Full Text] [Related]
2. Redox-active NiS@bacterial cellulose nanofiber composite separators with superior rate capability for lithium-ion batteries. Zhang Y; Du W; Ye D; Zhou J; Xu W; Xu J Int J Biol Macromol; 2024 May; 268(Pt 1):131622. PubMed ID: 38636762 [TBL] [Abstract][Full Text] [Related]
3. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
4. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes. Wei TS; Ahn BY; Grotto J; Lewis JA Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991 [TBL] [Abstract][Full Text] [Related]
5. Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method. Liu X; Qin M; Sun W; Zhang D; Jian B; Sun Z; Wang S; Li X Int J Biol Macromol; 2023 Jan; 225():1476-1486. PubMed ID: 36435462 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO Zhang Y; Li J; Li W; Kang D Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615 [TBL] [Abstract][Full Text] [Related]
7. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778 [TBL] [Abstract][Full Text] [Related]
8. Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries. Yang Y; Huang C; Gao G; Hu C; Luo L; Xu J Carbohydr Polym; 2020 Nov; 247():116702. PubMed ID: 32829830 [TBL] [Abstract][Full Text] [Related]
9. Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries. Lu H; Cornell A; Alvarado F; Behm M; Leijonmarck S; Li J; Tomani P; Lindbergh G Materials (Basel); 2016 Feb; 9(3):. PubMed ID: 28773252 [TBL] [Abstract][Full Text] [Related]
10. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Lv D; Chai J; Wang P; Zhu L; Liu C; Nie S; Li B; Cui G Carbohydr Polym; 2021 Jan; 251():116975. PubMed ID: 33142552 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of Chemically Modified Cellulose Nanofiber Membranes as Lithium-Ion Battery Separators. Kim H; Mattinen U; Guccini V; Liu H; Salazar-Alvarez G; Lindström RW; Lindbergh G; Cornell A ACS Appl Mater Interfaces; 2020 Sep; 12(37):41211-41222. PubMed ID: 32812731 [TBL] [Abstract][Full Text] [Related]
12. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Huang C; Ji H; Yang Y; Guo B; Luo L; Meng Z; Fan L; Xu J Carbohydr Polym; 2020 Feb; 230():115570. PubMed ID: 31887969 [TBL] [Abstract][Full Text] [Related]
13. Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries. Lu H; Guccini V; Kim H; Salazar-Alvarez G; Lindbergh G; Cornell A ACS Appl Mater Interfaces; 2017 Nov; 9(43):37712-37720. PubMed ID: 28972727 [TBL] [Abstract][Full Text] [Related]
14. Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder. Lu H; Behm M; Leijonmarck S; Lindbergh G; Cornell A ACS Appl Mater Interfaces; 2016 Jul; 8(28):18097-106. PubMed ID: 27362635 [TBL] [Abstract][Full Text] [Related]
15. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process. Liu C; Cheng X; Li B; Chen Z; Mi S; Lao C Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28796182 [TBL] [Abstract][Full Text] [Related]
17. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery. Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737 [TBL] [Abstract][Full Text] [Related]
18. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. Zhang J; Wang N; Zhang W; Fang S; Yu Z; Shi B; Yang J J Colloid Interface Sci; 2020 Oct; 578():452-460. PubMed ID: 32535427 [TBL] [Abstract][Full Text] [Related]
19. Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. Sandu G; Ernould B; Rolland J; Cheminet N; Brassinne J; Das PR; Filinchuk Y; Cheng L; Komsiyska L; Dubois P; Melinte S; Gohy JF; Lazzaroni R; Vlad A ACS Appl Mater Interfaces; 2017 Oct; 9(40):34865-34874. PubMed ID: 28910075 [TBL] [Abstract][Full Text] [Related]
20. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity. Liu H; Zheng Z; Chen B; Liao L; Wang X Nanoscale Res Lett; 2017 Dec; 12(1):302. PubMed ID: 28449547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]