These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 30486511)
1. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System. Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511 [TBL] [Abstract][Full Text] [Related]
2. Coherent Doppler lidar signal spectrum with wind turbulence. Frehlich R; Cornman L Appl Opt; 1999 Dec; 38(36):7456-66. PubMed ID: 18324299 [TBL] [Abstract][Full Text] [Related]
3. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Frehlich R Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185 [TBL] [Abstract][Full Text] [Related]
4. Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network. Kliebisch O; Uittenbosch H; Thurn J; Mahnke P Opt Express; 2022 Feb; 30(4):5540-5552. PubMed ID: 35209514 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Wei T; Xia H; Hu J; Wang C; Shangguan M; Wang L; Jia M; Dou X Opt Express; 2019 Oct; 27(22):31235-31245. PubMed ID: 31684359 [TBL] [Abstract][Full Text] [Related]
6. Pulse Accumulation Approach Based on Signal Phase Estimation for Doppler Wind Lidar. Liang N; Yu X; Lin P; Chang S; Zhang H; Su C; Luo F; Tong S Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610272 [TBL] [Abstract][Full Text] [Related]
8. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis. Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831 [TBL] [Abstract][Full Text] [Related]
9. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach. Wu Y; Guo P; Chen S; Chen H; Zhang Y Appl Opt; 2017 Apr; 56(10):2705-2713. PubMed ID: 28375232 [TBL] [Abstract][Full Text] [Related]
10. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network. Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030 [TBL] [Abstract][Full Text] [Related]
11. Intelligent and compact coherent Doppler lidar with fiber-based configuration for robust wind sensing in various atmospheric and environmental conditions. Kotake N; Sakamaki H; Imaki M; Miwa Y; Ando T; Yabugaki Y; Enjo M; Kameyama S Opt Express; 2022 May; 30(11):20038-20062. PubMed ID: 36221764 [TBL] [Abstract][Full Text] [Related]
12. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness. Zhai X; Wu S; Liu B Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882 [TBL] [Abstract][Full Text] [Related]
13. 1.55-μm high-peak, high-average-power laser amplifier using an Er,Yb:glass planar waveguide for wind sensing coherent Doppler lidar. Sakimura T; Hirosawa K; Watanabe Y; Ando T; Kameyama S; Asaka K; Tanaka H; Furuta M; Hagio M; Hirano Y; Inokuchi H; Yanagisawa T Opt Express; 2019 Aug; 27(17):24175-24187. PubMed ID: 31510311 [TBL] [Abstract][Full Text] [Related]
14. Active alignment of receiving beam for coaxial optics in wind sensing coherent Doppler lidar using feedback control based on the processing of heterodyne-detected signal. Ito Y; Imaki M; Tanaka H; Hagio M; Inokuchi H; Kameyama S Appl Opt; 2022 Jan; 61(2):352-361. PubMed ID: 35200869 [TBL] [Abstract][Full Text] [Related]
16. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar. Yuan J; Xia H; Wei T; Wang L; Yue B; Wu Y Opt Express; 2020 Dec; 28(25):37406-37418. PubMed ID: 33379576 [TBL] [Abstract][Full Text] [Related]
17. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers. Li Y; Hoskins A; Schlottau F; Wagner KH; Embry C; Babbitt WR Appl Opt; 2006 Sep; 45(25):6409-20. PubMed ID: 16912777 [TBL] [Abstract][Full Text] [Related]
18. Continuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanning. Brinkmeyer E; Waterholter T Opt Express; 2013 Jan; 21(2):1872-97. PubMed ID: 23389172 [TBL] [Abstract][Full Text] [Related]