These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30486549)

  • 1. Distributed ICSA Clustering Approach for Large Scale Protein Sequences and Cancer Diagnosis.
    K T; N KV; S S; M P
    Asian Pac J Cancer Prev; 2018 Nov; 19(11):3105-3109. PubMed ID: 30486549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences.
    Matias Rodrigues JF; von Mering C
    Bioinformatics; 2014 Jan; 30(2):287-8. PubMed ID: 24215029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel clustering algorithm for large-scale biological data sets.
    Wang M; Zhang W; Ding W; Dai D; Zhang H; Xie H; Chen L; Guo Y; Xie J
    PLoS One; 2014; 9(4):e91315. PubMed ID: 24705246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution based Fuzzy Estimate Spectral Clustering for Cancer Detection with Protein Sequence and Structural Motifs.
    K T; N KV; S S
    Asian Pac J Cancer Prev; 2018 Jul; 19(7):1935-1940. PubMed ID: 30051675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
    Bensmail H; Golek J; Moody MM; Semmes JO; Haoudi A
    Bioinformatics; 2005 May; 21(10):2210-24. PubMed ID: 15769836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores.
    Girgis HZ
    BMC Genomics; 2022 Jun; 23(1):423. PubMed ID: 35668366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast hierarchical clustering algorithm for large-scale protein sequence data sets.
    Szilágyi SM; Szilágyi L
    Comput Biol Med; 2014 May; 48():94-101. PubMed ID: 24657908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CASS: A distributed network clustering algorithm based on structure similarity for large-scale network.
    Kim J; Shin M; Kim J; Park C; Lee S; Woo J; Kim H; Seo D; Yu S; Park S
    PLoS One; 2018; 13(10):e0203670. PubMed ID: 30303961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale.
    Nepusz T; Sasidharan R; Paccanaro A
    BMC Bioinformatics; 2010 Mar; 11():120. PubMed ID: 20214776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance computational analysis of large-scale proteome data sets to assess incremental contribution to coverage of the human genome.
    Neuhauser N; Nagaraj N; McHardy P; Zanivan S; Scheltema R; Cox J; Mann M
    J Proteome Res; 2013 Jun; 12(6):2858-68. PubMed ID: 23611042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic multiple sequence alignments: refinement using a genetic algorithm.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2005 Aug; 6():200. PubMed ID: 16086841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.
    O'Driscoll A; Belogrudov V; Carroll J; Kropp K; Walsh P; Ghazal P; Sleator RD
    J Biomed Inform; 2015 Apr; 54():58-64. PubMed ID: 25625550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment.
    Oh J; Choi CH; Park MK; Kim BK; Hwang K; Lee SH; Hong SG; Nasir A; Cho WS; Kim KM
    PLoS One; 2016; 11(3):e0151064. PubMed ID: 26954507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward high-throughput, multicriteria protein-structure comparison and analysis.
    Shah AA; Folino G; Krasnogor N
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):144-55. PubMed ID: 20650704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data.
    Adamczak R; Meller J
    BMC Bioinformatics; 2016 Dec; 17(1):546. PubMed ID: 28031034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FastaHerder2: Four Ways to Research Protein Function and Evolution with Clustering and Clustered Databases.
    Mier P; Andrade-Navarro MA
    J Comput Biol; 2016 Apr; 23(4):270-8. PubMed ID: 26828375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified two-stage Markov clustering algorithm for large and sparse networks.
    Szilágyi L; Szilágyi SM
    Comput Methods Programs Biomed; 2016 Oct; 135():15-26. PubMed ID: 27586476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2004 Oct; 5():171. PubMed ID: 15511296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knowledge based cluster ensemble for cancer discovery from biomolecular data.
    Yu Z; Wongb HS; You J; Yang Q; Liao H
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):76-85. PubMed ID: 21742574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poisson-based self-organizing feature maps and hierarchical clustering for serial analysis of gene expression data.
    Wang H; Zheng H; Azuaje F
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):163-75. PubMed ID: 17473311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.